已知橢圓的一個焦點為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動點為橢圓外一點,且點到橢圓的兩條切線相互垂直,求點的軌跡方程.
(1);(2).

試題分析:(1)利用題中條件求出的值,然后根據(jù)離心率求出的值,最后根據(jù)、三者的關(guān)系求出的值,從而確定橢圓的標(biāo)準(zhǔn)方程;(2)分兩種情況進(jìn)行計算:第一種是在從點所引的兩條切線的斜率都存在的前提下,設(shè)兩條切線的斜率分別為、,并由兩條切線的垂直關(guān)系得到,并設(shè)從點所引的直線方程為,將此直線的方程與橢圓的方程聯(lián)立得到關(guān)于的一元二次方程,利用得到有關(guān)的一元二次方程,最后利用以及韋達(dá)定理得到點的軌跡方程;第二種情況是兩條切線與坐標(biāo)軸垂直的情況下求出點的坐標(biāo),并驗證點是否在第一種情況下所得到的軌跡上,從而得到點的軌跡方程.
(1)由題意知,且有,即,解得
因此橢圓的標(biāo)準(zhǔn)方程為;
(2)①設(shè)從點所引的直線的方程為,即,
當(dāng)從點所引的橢圓的兩條切線的斜率都存在時,分別設(shè)為、,則,
將直線的方程代入橢圓的方程并化簡得,
,
化簡得,即,
、是關(guān)于的一元二次方程的兩根,則
化簡得;
②當(dāng)從點所引的兩條切線均與坐標(biāo)軸垂直,則的坐標(biāo)為,此時點也在圓上.
綜上所述,點的軌跡方程為.的符號來進(jìn)行轉(zhuǎn)化,計算量較大,從中也涉及了方程思想的靈活應(yīng)用,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點,G,H分別是線段ON,CN的中點.
(1)證明:直線EG與FH的交點L在橢圓W:上;
(2)設(shè)直線l:與橢圓W:有兩個不同的交點P,Q,直線l與矩形ABCD有兩個不同的交點S,T,求的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,,右頂點為A,上頂點為B.已知=.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點的一點,以線段PB為直徑的圓經(jīng)過點,經(jīng)過點的直線與該圓相切與點M,=.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓=1與雙曲線=1(m,n,p,q均為正數(shù))有共同的焦點F1,F(xiàn)2,P是兩曲線的一個公共點,則·=(  )
A.p2-m2B.p-mC.m-pD.m2-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:=1(b>0),直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數(shù)b的取值范圍是(  )
A.[1,4)B.[1,+∞)
C.[1,4)∪(4,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個三角形,當(dāng)該三角形面積最小時,切點為P(如圖),雙曲線過點P且離心率為.
(1)求的方程;
(2)橢圓過點P且與有相同的焦點,直線的右焦點且與交于A,B兩點,若以線段AB為直徑的圓心過點P,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的準(zhǔn)線與橢圓相切,且該切點與橢圓的兩焦點構(gòu)成的三角形面積為2,則橢圓的離心率是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個焦點恰好與拋物線的焦點重合.
求橢圓的方程;
設(shè)橢圓的上頂點為,過點作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓的兩個焦點,過的直線交橢圓于兩點,,
(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案