精英家教網(wǎng)如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E是BC的中點(diǎn),平面B1ED交A1D1于F
(1)指出F在A1D1上的位置,并證明;
(2)求三棱錐C1-B1EF的體積.
分析:作圖后(1)F在A1D1上的中點(diǎn);只需證明四邊形B1FDE為平行四邊形,即可.
(2)利用等體積的思想轉(zhuǎn)化為:求三棱錐C1-B1EF的體積,就是求F-B1EC1的體積.
解答:精英家教網(wǎng)解:(1)F為A1D1上的中點(diǎn).證明如下:取A1D1上的中點(diǎn)F,連接DF,ED,∵△B1A1F≌△DCE,△DD1F≌△B1BE∴B1F=ED,B1=FD∴四邊形B1FDE為平行四邊形∴平面B1ED交A1D1于A1D1的中點(diǎn)F
(2)VC1-B1EF=VF-B1EC1=
1
3
×
1
2
×1×1×1=
1
6
點(diǎn)評(píng):本題考查直線與平面平行的性質(zhì),棱錐的體積,考查空間想象能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案