橢圓+ =1的焦點(diǎn)為F1、F2,點(diǎn)P為其上的動(dòng)點(diǎn),當(dāng)∠F1PF2為鈍角時(shí),點(diǎn)P橫坐標(biāo)的取值范圍是?
<x0<
設(shè)P點(diǎn)橫坐標(biāo)為x0,則|PF1|=a+ex0=3+x0,|PF2|=aex0=3-x0.∠F1PF2為鈍角,當(dāng)且僅當(dāng)|F1F2|2-|PF1|2-|PF2|2>0,解之即得-<x0<.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn)離心率,
(1)求橢圓方程;
(2)若過點(diǎn)的直線與橢圓C交于A、B兩點(diǎn),且以AB為直徑的圓過原點(diǎn),試求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖象恒過定點(diǎn)A。若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,當(dāng)有最小值時(shí),橢圓的離心率為     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)(-2,-)的橢圓C的標(biāo)準(zhǔn)  方程;
(2)對(duì)(1)中的橢圓C,設(shè)斜率為1的直線l交橢圓CAB兩點(diǎn),AB的中點(diǎn)為M,證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過原點(diǎn)的定直線上;
(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P、Q是橢圓C:上的兩個(gè)動(dòng)點(diǎn),是橢圓上一定點(diǎn),是其左焦點(diǎn),且|PF|、|MF|、|QF|成等差數(shù)列。
求證:線段PQ的垂直平分線經(jīng)過一個(gè)定點(diǎn)A;       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(1,1)為橢圓=1內(nèi)一點(diǎn),F1為橢圓左焦點(diǎn),P為橢圓上一動(dòng)點(diǎn) 求|PF1|+|PA|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程4x2+Ry2=1的曲線是焦點(diǎn)在y軸上的橢圓,則R的取值范圍是
A.R>0B.0<R<2
C.0<R<4D.2<R<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓上運(yùn)動(dòng), 則△PF1F2的重心G的軌跡方程是                         .  

查看答案和解析>>

同步練習(xí)冊(cè)答案