【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達(dá)式,并直接寫(xiě)出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:f(1)=f(﹣1)=﹣2
(2)解:令x>0,則﹣x<0,
則f(﹣x)= log (1+x)﹣x=f(x),
故x>0時(shí),f(x)= log (1+x)﹣x,
故f(x)= ;
故f(x)在(﹣∞,0]遞增,在(0,+∞)遞減
(3)解:若f(lga)+2<0,即f(lga)<﹣2,
lga>0時(shí),f(lga)<f(1),則lga>1,
lga<0時(shí),f(lga)<f(﹣1),則lga<﹣1,
故lga>1或lga<﹣1,
解得:a>10或0<a<
【解析】(1)根據(jù)函數(shù)的奇偶性求出f(1)即f(﹣1)的值即可;(2)令x>0,得到﹣x<0,根據(jù)函數(shù)的奇偶性求出f(x)的解析式,從而求出函數(shù)的單調(diào)區(qū)間即可;(3)問(wèn)題轉(zhuǎn)化為f(lga)<﹣2,得到關(guān)于a的不等式,解出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為預(yù)防H1N1病毒暴發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測(cè)試該疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒(méi)有通過(guò)),公司選定2000個(gè)流感樣本分成三組,測(cè)試結(jié)果如表:
A組 | B組 | C組 | |
疫苗有效 | 673 | x | y |
疫苗無(wú)效 | 77 | 90 | z |
已知在全體樣本中隨機(jī)抽取1個(gè),抽到B組疫苗有效的概率是0.33.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,問(wèn)應(yīng)在C組抽取多少個(gè)?
(3)已知y≥465,z≥25,求不能通過(guò)測(cè)試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(ω>0,||< ,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為( )
A.y=﹣4sin( )
B.y=4sin( )
C.y=﹣4sin( )
D.y=4sin( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了豐富學(xué)生的業(yè)余生活,以班級(jí)為單位組織學(xué)生開(kāi)展古詩(shī)詞背誦比賽,隨機(jī)抽取題目,背誦正確加10分,背誦錯(cuò)誤減10分,只有“正確”和“錯(cuò)誤”兩種結(jié)果,其中某班級(jí)的正確率為 ,背誦錯(cuò)誤的概率為 ,現(xiàn)記“該班級(jí)完成n首背誦后總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記ξ=|S5|,求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)偶函數(shù)的導(dǎo)函數(shù)是函數(shù),當(dāng)時(shí), ,則使得成立的的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱子的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中, 為坐標(biāo)原點(diǎn),曲線: (為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系,直線: .
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)曲線上恰好存在三個(gè)不同的點(diǎn)到直線的距離相等,分別求出這三個(gè)點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】排列組合
(1)7位同學(xué)站成一排,甲、乙兩同學(xué)必須相鄰的排法共有多少種?
(2)7位同學(xué)站成一排,甲、乙和丙三個(gè)同學(xué)都不能相鄰的排法共有多少種?
(3)7位同學(xué)站成一排,甲不站排頭,乙不站排尾,不同站法種數(shù)有多少種?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com