【題目】在數(shù)列{an}和{bn}中,a1= ,{an}的前n項為Sn , 滿足Sn+1+( )n+1=Sn+( )n(n∈N*),bn=(2n+1)an , {bn}的前n項和為Tn .
(1)求數(shù)列{bn}的通項公式bn以及Tn .
(2)若T1+T3 , mT2 , 3(T2+T3)成等差數(shù)列,求實數(shù)m的值.
【答案】
(1)解:∵Sn+1+( )n+1=Sn+( )n(n∈N*),∴an+1=Sn+1﹣Sn= ﹣ = .
∴n≥2時,an= ,又a1= ,因此n=1時也成立.
∴an= ,
∴bn=(2n+1)an=(2n+1)× .
∴Tn= + + +…+ ,
= +…+ + ,
∴ = ﹣ = +2× ﹣ ,
∴Tn=5﹣
(2)解:由(1)可得:T1= ,T2= ,T3= .
∵T1+T3,mT2,3(T2+T3)成等差數(shù)列,∴ + +3×( + )=2× ,
解得m=
【解析】(1)由Sn+1+( )n+1=Sn+( )n(n∈N*),可得an+1=Sn+1﹣Sn= .可得an= ,bn=(2n+1)an=(2n+1)× .利用“錯位相減法”與等比數(shù)列的求和公式即可得出.(2)由(1)可得:T1= ,T2= ,T3= .利用T1+T3 , mT2 , 3(T2+T3)成等差數(shù)列,即可得出.
【考點精析】本題主要考查了數(shù)列的前n項和和等差數(shù)列的性質(zhì)的相關(guān)知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w為常數(shù)且 <w<1),函數(shù)f(x)的圖象關(guān)于直線x=π對稱.
(I)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=1,f( A)= .求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點的坐標(biāo)為A(0,1),B(1,0),C(0,﹣2),O為坐標(biāo)原點,動點M滿足| |=1,則| + + |的最大值是( )
A.
B.
C. ﹣1
D. ﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函數(shù)f(x)= ﹣1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,tanB= ,對任意滿足條件的A,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)φ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=1過橢圓C: (a>b>0)的短軸端點,P,Q分別是圓O與橢圓C上任意兩點,且線段PQ長度的最大值為3. (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,t)作圓O的一條切線交橢圓C于M,N兩點,求△OMN的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=2|x|﹣4的圖象與曲線C:x2+λy2=4恰有兩個不同的公共點,則實數(shù)λ的取值范圍是( )
A.[﹣ , )
B.[﹣ , ]
C.(﹣∞,﹣ ]∪(0, )
D.(﹣∞,﹣ ]∪[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y∈R,向量 分別為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若向量 , ,且 .
(Ⅰ)求點M(x,y)的軌跡C的方程;
(Ⅱ)設(shè)橢圓 ,P為曲線C上一點,過點P作曲線C的切線y=kx+m交橢圓E于A、B兩點,試證:△OAB的面積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com