已知
A
5
n
=56
C
7
n
,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+…+an的值.
分析:(Ⅰ)根據(jù)題意,將
A
5
n
=56
C
7
n
按排列、組合公式展開化簡可得(n-5)(n-6)=90,解可得:n=15或n=-4,又由排列、組合數(shù)的定義,可得n的范圍,即可得答案;
(Ⅱ)由(Ⅰ)中求得n的值,可得(1-2x)15=a0+a1x+a2x2+a3x3+…+a15x15,令x=1可得a0+a1+a2+a3+…+a15=-1,令令x=0得a0=1,兩式相減可得答案.
解答:解:(Ⅰ)根據(jù)題意,
A
5
n
=56
C
7
n
得:n(n-1)(n-2)(n-3)(n-4)=56•
n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)
7•6•5•4•3•2•1

即(n-5)(n-6)=90
解之得:n=15或n=-4(舍去).
∴n=15.
(Ⅱ)當(dāng)n=15時,由已知有(1-2x)15=a0+a1x+a2x2+a3x3+…+a15x15
令x=1得:a0+a1+a2+a3+…+a15=-1,
令x=0得:a0=1,
∴a1+a2+a3+…+a15=-2.
點評:本題考查二項式定理的應(yīng)用、二項式系數(shù)的性質(zhì),解題時要注意排列、組合數(shù)的定義、性質(zhì),其次注意靈活運用賦值法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
A
5
n
=56
C
7
n
,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn
(1)求n的值;
(2)求a1+a2+a3+…+an的值;
(3)求展開式中系數(shù)絕對值最大的項是第幾項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
A
5
n
+
A
4
n
A
3
n
=4,則n
=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
A5n
=56
C7n
,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1+a2+a3+…+an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
A5n
=56
C7n
,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn
(1)求n的值;
(2)求a1+a2+a3+…+an的值;
(3)求展開式中系數(shù)絕對值最大的項是第幾項.

查看答案和解析>>

同步練習(xí)冊答案