10.已知A(3,2),B(-4,1),C(0,-1),點(diǎn)Q線段AB上的點(diǎn),則直線CQ的斜率取值范圍是$(-∞,-\frac{1}{2}]∪[1,+∞)$.

分析 kCA=1,kCB=$-\frac{1}{2}$.根據(jù)點(diǎn)Q線段AB上的點(diǎn),即可得出直線CQ的斜率取值范圍.

解答 解:kCA=$\frac{-1-2}{0-3}$=1,kCB=$\frac{-1-1}{0-(-4)}$=$-\frac{1}{2}$.
∵點(diǎn)Q線段AB上的點(diǎn),
則直線CQ的斜率取值范圍是:$(-∞,-\frac{1}{2}]∪[1,+∞)$.
故答案為:$(-∞,-\frac{1}{2}]∪[1,+∞)$.

點(diǎn)評 本題考查了直線的斜率計(jì)算公式及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{4x+3y-12≤0}\\{y-2≥0}\end{array}\right.$,則z=$\frac{3x-y+2}{x+1}$的最大值為( 。
A.$\frac{9}{5}$B.$\frac{3}{2}$C.$\frac{25}{16}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知中心在原點(diǎn),焦點(diǎn)在y軸上的雙曲線的離心率為$\sqrt{5}$,則它的漸近線方程為y=±$\frac{1}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a>0且a≠1,關(guān)于x的方程|ax-1|=5a-4有兩個(gè)相異實(shí)根,則a的取值范圍是$(\frac{4}{5},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖所示幾何體的三視圖,則該幾何體的表面積為16+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知四棱錐P-ABCD的正視圖1是一個(gè)底邊長為4、腰長為3的等腰三角形,圖2、圖53分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.點(diǎn)P(-1,2)到直線3x-4y+12=0的距離為( 。
A.5B.$\frac{1}{5}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱錐P-ABC中,BC⊥平面PAB,PA=PB=AB=6,BC=9,點(diǎn)M,N分別為PB,BC的中點(diǎn).
(1)求證:AM⊥平面PBC;
(2)E是線段AC上的點(diǎn),且AM∥平面PNE.
①確定點(diǎn)E的位置;②求直線PE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=xlnx+x2-ax+2(a∈R)有兩個(gè)不同的零點(diǎn)x1,x2
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:x1•x2>1.

查看答案和解析>>

同步練習(xí)冊答案