某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x+5000(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時(shí),可使公司造船的年利潤最大?

(1)P(x)= -10x3+45x2+3 240x-5 000(x∈N*,且1≤x≤20);
MP(x)=P(x+1)-P(x)=-30x2+60x+3 275 (x∈N*,且1≤x≤19)
(2)x=12時(shí),P(x)有最大值

解析試題分析:解:(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N*,且1≤x≤20);
MP(x)=P(x+1)-P(x)=-30x2+60x+3 275 (x∈N*,且1≤x≤19).  4分
(2)=-30x2+90x+3 240=-30(x-12)(x+9),
∵x>0,∴=0時(shí),x=12,  8分
∴當(dāng)0<x<12時(shí),>0,當(dāng)x>12時(shí),<0,
∴x=12時(shí),P(x)有最大值.  11分
即年造船量安排12艘時(shí),可使公司造船的年利潤最大.   12分
考點(diǎn):函數(shù)的運(yùn)用
點(diǎn)評:主要是考查了函數(shù)模型的運(yùn)用,分析問題和解決問題能力的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1) 試問函數(shù)f(x)能否在x= 時(shí)取得極值?說明理由;
(2) 若a= ,當(dāng)x∈[,4]時(shí),函數(shù)f(x)與g(x)的圖像有兩個(gè)公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元。
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問生產(chǎn)多少件產(chǎn)品,總利潤最高?(總利潤=總銷售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將邊長為米的一塊正方形鐵皮的四角各截去一個(gè)大小相同的小正方形,然后將四邊折起做成一個(gè)無蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長應(yīng)為多少米?方盒的最大容積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求不等式的解集; (2)若的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是偶函數(shù),,
(1)求的值;(2)當(dāng)時(shí),求的解集;
(3)若函數(shù)的圖象總在的圖象上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),是定義域?yàn)镽上的奇函數(shù).
(1)求的值,并證明當(dāng)時(shí),函數(shù)是R上的增函數(shù);
(2)已知,函數(shù),,求的值域;
(3)若,試問是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求(lg2)2+lg2·lg50+lg25的值.

查看答案和解析>>

同步練習(xí)冊答案