已知幾何體ABCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.

   (1)求異面直線DE與AB所成角的余弦值;

   (2)求二面角A-ED-B的正弦值;

(3)求此幾何體的體積V的大小.

(1)(2)(3)16


解析:

證明:(1)取EC的中點(diǎn)是F,連結(jié)BF,

BF//DE,∴∠FBA或其補(bǔ)角即為異面直線DEAB所成的角.

在△BAF中,AB=,BF=AF=.∴

∴異面直線DEAB所成的角的余弦值為.………5分

   (2)AC⊥平面BCE,過CCGDEDEG,連AG

可得DE⊥平面ACG,從而AGDE

∴∠AGC為二面角A-ED-B的平面角.

在△ACG中,∠ACG=90°,AC=4,G=

.∴

∴二面角A-ED-B的的正弦值為.…………………………10分

(3)

∴幾何體的體積V為16.………………………………………15分

方法二:(坐標(biāo)法)(1)以C為原點(diǎn),以CA,CB,CE所在直線為x,y,z軸建立空間直角坐標(biāo)系.

則A(4,0,0),B(0,4,0),D(0,4,2),E(0,0,4)

,∴

∴異面直線DE與AB所成的角的余弦值為.………5分

(2)平面BDE的一個(gè)法向量為

設(shè)平面ADE的一個(gè)法向量為,

從而,

,則,

∴二面角A-ED-B的的正弦值為.…………………………10分

(3),∴幾何體的體積V為16.……………15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD是邊長(zhǎng)為4cm的正方形,直線AD垂直于以AB為直徑的圓所在的平面,點(diǎn)E是該圓上異于A,B的一點(diǎn),連接AE、BE、DE、CE.
(1)求證:平面ADE⊥平面BCE;
(2)若∠BAE=30°,求幾何體CD-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四邊形ABCD是邊長(zhǎng)為4cm的正方形,直線AD垂直于以AB為直徑的圓所在的平面,點(diǎn)E是該圓上異于A,B的一點(diǎn),連接AE、BE、DE、CE.
(1)求證:平面ADE⊥平面BCE;
(2)若∠BAE=30°,求幾何體CD-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年廣東省廣州市海珠區(qū)高一(上)學(xué)業(yè)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知四邊形ABCD是邊長(zhǎng)為4cm的正方形,直線AD垂直于以AB為直徑的圓所在的平面,點(diǎn)E是該圓上異于A,B的一點(diǎn),連接AE、BE、DE、CE.
(1)求證:平面ADE⊥平面BCE;
(2)若∠BAE=30°,求幾何體CD-ABE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案