AB是過(guò)C:y2=4x焦點(diǎn)的弦,且|AB|=10,則AB中點(diǎn)的橫坐標(biāo)是
4
4
分析:利用拋物線焦點(diǎn)弦的性質(zhì)即可得出.
解答:解:∵拋物線C:y2=4x的方程,∴p=2.
設(shè)A(x1,y1),B(x2,y2),∵直線AB過(guò)拋物線的交點(diǎn),∴|AB|=x1+x2+2=10,∴x1+x2=8.
∴AB中點(diǎn)的橫坐標(biāo)=
x1+x2
2
=4.
故答案為4.
點(diǎn)評(píng):熟練掌握拋物線焦點(diǎn)弦的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A、B是拋物線C:y2=2px(p>0)上的兩個(gè)動(dòng)點(diǎn),F(xiàn)是焦點(diǎn),直線AB不垂直于x軸且交x軸于點(diǎn)D.
(1)若D與F重合,且直線AB的傾斜角為
π
4
,求證:
OA
OB
p2
是常數(shù)(O是坐標(biāo)原點(diǎn));
(2)若|AF|+|BF|=8,線段AB的垂直平分線恒過(guò)定點(diǎn)Q(6,0),求拋物線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線l過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸、如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)△ABP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AB是過(guò)拋物線y2=2x的焦點(diǎn)F的弦,且|AB|=4,則AB的中點(diǎn)C到直線x+=0的距離為________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AB是過(guò)拋物線y2=2x的焦點(diǎn)F的弦,且|AB|=4,則AB的中點(diǎn)C到直線x+=0的距離為________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案