如圖,PA垂直于圓O所在的平面,AB是圓O的直徑,C是圓O上的一點,E,F(xiàn)分別是點A在PB,PC上的射影,給出下列結論:
①AF⊥PB②EF⊥PB③AF⊥BC④AE⊥BC,
正確命題的個數(shù)為( 。
A、1B、2C、3D、4
考點:空間中直線與平面之間的位置關系
專題:空間位置關系與距離
分析:分別根據(jù)線面垂直和面面垂直的判定定理和性質定理分別進行證明四個結論的真假,最后綜合討論結果,可得答案.
解答: 解:∵AB是⊙O的直徑,
∴AC⊥BC,
∵PA⊥⊙O所在平面,
∴PA⊥⊙O所在平面內的所有直線,
∴PA⊥AC,PA⊥AB,PA⊥BC,
∴BC⊥面PAC,
∴BC⊥PC,
∵F是點A在PC上的射影,
∴AF⊥PC,
∵AF∩PC=F,
∴PC⊥面PAC,
∴AF⊥BC,
又AF⊥PC,
∴AF⊥面PBC,
∴AF⊥PB,∴①正確;
∵AF⊥面PBC,
BC?面PBC,
∴AF⊥BC∴③正確.
∵AF⊥PB,AE⊥PB,AF∩AE=A,
∴PB⊥面AEF,
∴EF⊥PB,
∴②正確.
∵AF⊥面PBC,
∴若AE⊥BC,
則AE⊥面PBC,
此時E,F(xiàn)重合,與已知矛盾.∴④錯誤;
故命題①②③正確,
故選:C
點評:本題主要考查了直線與平面垂直的判定,以及直線與平面垂直的性質,考查化歸與轉化的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

用4種顏色給一個正四面體的4個頂點染色,若同一條棱的兩個端點不能用相同的顏色,那么不同的染色方法共有
 
種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從不同號碼的三雙靴中任取4只,其中恰好有一雙的取法種數(shù)為( 。
A、12B、24C、36D、72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

812014除以100的余數(shù)是( 。
A、1B、79C、21D、81

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,過點A(1,0)且垂直于極軸的直線的極坐標方程為( 。
A、ρ=sinθ
B、ρ=1
C、ρcosθ=1
D、ρsinθ=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A′B′C′D′中,E是棱BC的中點,G是棱DD′的中點,則異面直線GB與B′E所成的角為( 。
A、120°B、90°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合P={x∈R|x2+2x<0},Q={x∈R|
1
x+1
>0},則P∩Q=( 。
A、(-2,1)B、(-1,0)
C、∅D、(-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為1,則異面直線AD1和DC1所成角的余弦值等于( 。
A、
2
5
B、
1
5
C、
5
5
D、-
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
y2
9
-
x2
16
=1的漸近線方程是( 。
A、y=±
3
4
x
B、y=±
4
3
x
C、y=±
5
3
x
D、y=±
3
5
x

查看答案和解析>>

同步練習冊答案