已知函數(shù)。
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)有兩個(gè)極值點(diǎn),若過兩點(diǎn),的直線軸的交點(diǎn)在曲線上,求的值。
解:(1)依題意可得
當(dāng)時(shí),恒成立,
,
所以函數(shù)上單調(diào)遞增;
當(dāng)
時(shí),有兩個(gè)相異實(shí)

故由,
此時(shí)單調(diào)遞增由
此時(shí)此時(shí)單調(diào)遞增遞減
綜上可知當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞增,在單調(diào)遞增,在單調(diào)遞減。
(2)由題設(shè)知,為方程的兩個(gè)根,故有
因此同理
因此直線的方程為
設(shè)軸的交點(diǎn)為,得

由題設(shè)知,點(diǎn)在曲線的上,故,解得所以所求的值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,已知函數(shù) f(x)=
alnxx
,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù).

(1)討論函數(shù)的奇偶性(只寫結(jié)論,不要求證明);

(2)在構(gòu)成函數(shù)的映射中,當(dāng)輸入值為和2時(shí)分別對(duì)應(yīng)的輸出值為,求、的值;

(3)在(2)的條件下,求函數(shù))的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省、臨川一中高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知函數(shù),其中.(1) 討論函數(shù)的單調(diào)性,并求出的極值;(2) 若對(duì)于任意,都存在,使得,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆海南省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)

   (1)討論的單調(diào)性;

   (2)設(shè),證明:當(dāng)時(shí),;

   (3)若函數(shù)的圖像與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,

證明:x0)<0.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分14分)

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)為偶數(shù)時(shí),正項(xiàng)數(shù)列滿足,求的通項(xiàng)公式;

(3)當(dāng)為奇數(shù)且時(shí),求證:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案