分析 (1)令x=a,則f(a)=2,從而可知f(x)過定點(a,2),再由題設即可求得a值;
(2)根據(jù)圖象平移規(guī)則:左加右減,上加下減即可求得g(x)表達式,從而可得h(x)的解析式;
(3)令t=log3x,則t∈[0,2],不等式[h(x)+2]2≤h(x2)+m+6 恒成立,可轉化為關于t的二次不等式恒成立,進而轉化為求函數(shù)的最值解決,利用二次函數(shù)的性質易求其最值;
解答 解:(1)由已知a2-a+1=2,∴a=2.
(2)∵f(x)=2x-2+1,
∴g(x)=2x,
∴h(x)=log2x(x>0),
(3)要使不等式有意義:則有1<x≤4且1<x2≤4,
∴1<x≤2,
據(jù)題有${({log_2}x+2)^2}≤{log_2}{x^2}+m{log_2}x+6$在(1,2]恒成立,
∴設t=log2x(1<x≤2),
∴0<t≤1,
∴(t+2)2≤2t+tm+6在(0,1]時恒成立.
即:$m≥\frac{{{t^2}+2t-2}}{t}=t-\frac{2}{t}+2$在[0,1]時恒成立,
設$y=t-\frac{2}{t}+2$,t∈(0,1]單調遞增,
∴t=1時,有ymax=1,
∴m≥1.
點評 本題考查函數(shù)恒成立問題,考查函數(shù)圖象變換及反函數(shù),考查學生分析問題解決問題的能力,解決恒成立問題的基本思路是轉化為函數(shù)的最值解決.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,$\frac{3}{2}$] | B. | [0,$\frac{9}{2}$] | C. | [-3,15] | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,1) | B. | (-5,1) | C. | ($\frac{1}{2}$,1) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{2}{4029}$ | B. | -$\frac{2}{4030}$ | C. | -$\frac{2}{4031}$ | D. | -$\frac{2}{4033}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com