已知命題P:“函數(shù)在(-1,+∞)上單調(diào)遞增”,命題Q:“冪函數(shù)在(0,+∞)上單調(diào)遞減”。
(1)若命題P和命題Q同時(shí)為真,求實(shí)數(shù)m的取值范圍;
(2)若命題P和命題Q有且只有一個(gè)真命題,求實(shí)數(shù)m的取值范圍。
解:P:m<1,
Q:-1<m<3,
(1)同時(shí)為真,-1<m<1;
(2)有且僅有一個(gè)真,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(12分)已知命題P:函數(shù)在區(qū)間[-1,3]上的最小值等于2;命題Q:不等式對(duì)任意恒成立。如果上述兩個(gè)命題中有且僅有一個(gè)真命題,試求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分16分)

   (文科學(xué)生做)已知命題p:函數(shù)在R上存在極值;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對(duì),都有;

為真,為假,試求實(shí)數(shù)a的取值范圍。

 

(理科學(xué)生做)已知命題p:對(duì),函數(shù)有意義;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對(duì),都有;

為真,為假,試求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分16分)

   (文科學(xué)生做)已知命題p:函數(shù)在R上存在極值;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對(duì),都有;

為真,為假,試求實(shí)數(shù)a的取值范圍。

 

(理科學(xué)生做)已知命題p:對(duì),函數(shù)有意義;

命題q:設(shè)A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若對(duì),都有

為真,為假,試求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省邵武四中高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(1)已知a>0且a1常數(shù),求函數(shù)定義
域和值域;
(2)已知命題P:函數(shù)上單調(diào)遞增;命題Q:不等式
對(duì)任意實(shí)數(shù)恒成立;若是真命題,求實(shí)數(shù)的取值范

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(1)已知a>0且a1常數(shù),求函數(shù)定義

域和值域;

(2)已知命題P:函數(shù)上單調(diào)遞增;命題Q:不等式

 

對(duì)任意實(shí)數(shù)恒成立;若是真命題,求實(shí)數(shù)的取值范

 

查看答案和解析>>

同步練習(xí)冊(cè)答案