(本題滿分12分)已知函數(shù)

(1)當(dāng)的取值范圍;

(2)是否存在這樣的實(shí)數(shù),使得函數(shù)在區(qū)間上為減函數(shù),且最大值為1,若存在,求出值;若不存在,說明理由。

 

【答案】

(1);(2)這樣的不存在。

【解析】

試題分析:(1)根據(jù)對數(shù)函數(shù)有意義可知,真數(shù)部分上恒成立,即,得到a的范圍。

(2)假設(shè)存在這樣的

設(shè),且有,可知外層為增函數(shù),得到a的范圍,進(jìn)而求解最值。

解:(1),    上恒成立,即

當(dāng)

當(dāng)     …………..4分

(2)假設(shè)存在這樣的

設(shè),且有………..6分

在區(qū)間內(nèi)為增函數(shù),     即………………8分

      …………..10分

內(nèi),所以這樣的不存在……………12分

考點(diǎn):本題主要考查對數(shù)函數(shù)的定義域和復(fù)合函數(shù)單調(diào)性的運(yùn)用求解最值。

點(diǎn)評:解決該試題的關(guān)鍵是根據(jù)已知中恒有意義說明了最小值處 函數(shù)值大于零,同時(shí)根據(jù)存在a使得函數(shù)遞減,則利用同增異減的思想得到a的取值情況。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥一中、六中、一六八中學(xué)2010-2011學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)(理 題型:解答題

(本題滿分12分)已知△的三個(gè)內(nèi)角、所對的邊分別為、.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市高三調(diào)研檢測數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知橢圓的長軸長是短軸長的倍,是它的左,右焦點(diǎn).

(1)若,且,,求、的坐標(biāo);

(2)在(1)的條件下,過動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省高二上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知橢圓的長軸,短軸端點(diǎn)分別是A,B,從橢圓上一點(diǎn)M向x軸作垂線,恰好通過橢圓的左焦點(diǎn),向量是共線向量

(1)求橢圓的離心率

(2)設(shè)Q是橢圓上任意一點(diǎn),分別是左右焦點(diǎn),求的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案