(2004•黃埔區(qū)一模)過曲線y=x3-2x上點(1,-1)的切線方程的一般形式是
x-y-2=0或5x+4y-1=0
x-y-2=0或5x+4y-1=0
分析:先求導(dǎo)函數(shù),再假設(shè)切點坐標(biāo),從而可得切線方程,再將點(1,-1)代入,即可求得切線方程.
解答:解:求導(dǎo)函數(shù),y′=3x2-2
設(shè)切點的坐標(biāo)為(m,m3-2m),則切線方程為:y-(m3-2m)=(3m2-2)(x-m)
∵點(1,-1)在切線上
∴-1-(m3-2m)=(3m2-2)(1-m)
∴2m3-3m2+1=0
∴(m-1)2(2m+1)=0
∴m=1或m=-
1
2

當(dāng)m=1時,切線方程為x-y-2=0;當(dāng)m=-
1
2
時,切線方程為5x+4y-1=0
故答案為:x-y-2=0或5x+4y-1=0
點評:本題考查的重點是切線方程,解題的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義,應(yīng)注意切線過點(1,-1),但(1,-1)不一定為切點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃埔區(qū)一模)以橢圓
x2a2
+y2
=1(a>1)短軸一端點為直角頂點,作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個符合條件的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃埔區(qū)一模)已知,二次函數(shù)f(x)=ax2+bx+c及一次函數(shù)g(x)=-bx,其中a、b、c∈R,a>b>c,a+b+c=0.
(Ⅰ)求證:f(x)及g(x)兩函數(shù)圖象相交于相異兩點;
(Ⅱ)設(shè)f(x)、g(x)兩圖象交于A、B兩點,當(dāng)AB線段在x軸上射影為A1B1時,試求|A1B1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃埔區(qū)一模)設(shè)集合A={a,b},且A∪B={a,b,c},那么滿足條件的集合B共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃埔區(qū)一模)已知
a
=(1,2),
b
=(x,1),當(dāng)(
a
+2
b
)⊥(2
a
-
b
)時,實數(shù)x的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•黃埔區(qū)一模)給出四個命題:①若直線a∥平面α,直線b⊥α,則a⊥b;②若直線a∥平面α,a⊥平面β,則α⊥β;③若a∥b,且b?平面α,則a∥α;④若平面α⊥平面β,平面γ⊥β,則α⊥γ.其中不正確的命題個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案