分析:利用導(dǎo)數(shù)的運(yùn)算法則得出f′(x),分a=0,
0<a<討論起單調(diào)性.當(dāng)a=0時(shí),容易得出單調(diào)性;當(dāng)
0<a<時(shí),分別解出f′(x)>0與f′(x)<0的區(qū)間即可得出單調(diào)區(qū)間.
解答:解:
f′(x)=-a-=-
=-
(x>0),
令g(x)=ax
2-x+1-a,
①當(dāng)a=0時(shí),g(x)=-x+1,當(dāng)x∈(0,1)時(shí),g(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),g(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
②當(dāng)
0<a<時(shí),
由f′(x)=0,x
1=1,
x2=-1.此時(shí)
-1>1>0,列表如下:
由表格可知:函數(shù)f(x)在區(qū)間(0,1)和
(-1,+∞)上單調(diào)遞減,
在區(qū)間
(1,-1)上單調(diào)遞增.
綜上可知:①當(dāng)a=0時(shí),當(dāng)x∈(0,1)時(shí),函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)單調(diào)遞增.
②函數(shù)f(x)在區(qū)間(0,1)和
(-1,+∞)上單調(diào)遞減,在區(qū)間
(1,-1)上單調(diào)遞增.