【題目】已知a,b為實(shí)數(shù),函數(shù).
(1)已知,討論的奇偶性;
(2)若,①若,求在上的值域;
②若,解關(guān)于x的不等式.
【答案】(1)答案不唯一,具體見解析(2)①②或或
【解析】
(1)討論,兩種情況,分別討論函數(shù)的奇偶性得到答案.
(2)①,在上單調(diào)遞增,在上單調(diào)遞增,得到函數(shù)值域.
②,當(dāng)時(shí),,故,或,當(dāng)時(shí),,解得,得到答案.
(1)若,則,則定義域?yàn)?/span>,且,故為偶函數(shù);
若,則,
,,由于,則,且,故既不是奇函數(shù)也不是偶函數(shù);
(2)因?yàn)?/span>,則,
①若,則
當(dāng)時(shí),在上單調(diào)遞增,故的取值范圍為;
當(dāng)時(shí),在上單調(diào)遞增,故的取值范圍為;
所以在上的取值范圍為.
②因?yàn)?/span>,則,
當(dāng)時(shí),不等式可化為,又因?yàn)?/span>,則此時(shí)不等式的解為,或;
當(dāng)時(shí),不等式可化為,又因?yàn)?/span>,則此時(shí)不等式的解為;
故關(guān)于x的不等式的解為或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,是棱上動(dòng)點(diǎn),下列說法正確的是( ).
A.對(duì)任意動(dòng)點(diǎn),在平面內(nèi)存在與平面平行的直線
B.對(duì)任意動(dòng)點(diǎn),在平面內(nèi)存在與平面垂直的直線
C.當(dāng)點(diǎn)從運(yùn)動(dòng)到的過程中,與平面所成的角變大
D.當(dāng)點(diǎn)從運(yùn)動(dòng)到的過程中,點(diǎn)到平面的距離逐漸變小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(1+x)t﹣1的定義域?yàn)椋ī?/span>1,+∞),其中實(shí)數(shù)t滿足t≠0且t≠1.直線l:y=g(x)是f(x)的圖象在x=0處的切線.
(1)求l的方程:y=g(x);
(2)若f(x)≥g(x)恒成立,試確定t的取值范圍;
(3)若a1,a2∈(0,1),求證: .注:當(dāng)α為實(shí)數(shù)時(shí),有求導(dǎo)公式(xα)′=αxα﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,.
(Ⅰ)求證:平面面;
(Ⅱ)過的平面交于點(diǎn),若平面把四面體分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐中,點(diǎn)P是斜邊AB上一點(diǎn).給出下列四個(gè)命題:
①若平面ABC,則三棱錐的四個(gè)面都是直角三角形;
②若S在平面ABC上的射影是斜邊AB的中點(diǎn)P,則有;
③若,,,平面ABC,則面積的最小值為3;
④若,,,平面ABC,則三棱錐的外接球體積為.
其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(1)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)積為,即,求;
(3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓E:經(jīng)過橢圓C:()的左右焦點(diǎn),,與橢圓C在第一象限的交點(diǎn)為A,且,E,A三點(diǎn)共線.
(1)求橢圓C的方程;
(2)是否存在與直線(O為原點(diǎn))平行的直線l交橢圓C于M,N兩點(diǎn).使,若存在,求直線l的方程,不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(I)求出的值;
(II)求出這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);
(III)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求第2組恰好抽到2人的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com