設(shè)點(diǎn)P是線段P1P2上的一點(diǎn),P1、P2的坐標(biāo)分別為(x1,y1),(x2,y2).

(1)當(dāng)點(diǎn)P是線段P1P2上的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);

(2)當(dāng)點(diǎn)P是線段P1P2的一個(gè)三等分點(diǎn)時(shí),求P的坐標(biāo)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湛江二模)已知x軸上有一列點(diǎn)P1,P2 P3,…,Pn,…,當(dāng)n≥2時(shí),點(diǎn)Pn是把線段Pn-1 Pn+1 作n等分的分點(diǎn)中最靠近Pn+1的點(diǎn),設(shè)線段P1P2,P2P3,P3P4,…,PnPn+1的長(zhǎng)度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關(guān)于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設(shè)點(diǎn)P(n,an) {n≥3),在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)y=
k(x-1)2
(k>0)
 的圖象上?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年高中數(shù)學(xué)平面向量試題 題型:044

設(shè)點(diǎn)P是線段P1P2上的一點(diǎn),P1、P2的坐標(biāo)分別為(x1,y1),(x2,y2).

(1)當(dāng)點(diǎn)P是線段P1P2上的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo);

(2)當(dāng)點(diǎn)P是線段P1P2的一個(gè)三等分點(diǎn)時(shí),求P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《數(shù)列》2013年廣東省十二大市高三二模數(shù)學(xué)試卷匯編(理科)(解析版) 題型:解答題

已知x軸上有一列點(diǎn)P1,P2 P3,…,Pn,…,當(dāng)n≥2時(shí),點(diǎn)Pn是把線段Pn-1 Pn+1 作n等分的分點(diǎn)中最靠近Pn+1的點(diǎn),設(shè)線段P1P2,P2P3,P3P4,…,PnPn+1的長(zhǎng)度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關(guān)于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設(shè)點(diǎn)P(n,an) {n≥3),在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)y= 的圖象上?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省湛江市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知x軸上有一列點(diǎn)P1,P2 P3,…,Pn,…,當(dāng)n≥2時(shí),點(diǎn)Pn是把線段Pn-1 Pn+1 作n等分的分點(diǎn)中最靠近Pn+1的點(diǎn),設(shè)線段P1P2,P2P3,P3P4,…,PnPn+1的長(zhǎng)度分別 為a1,a2,a3,…,an,其中a1=1.
(1)求an關(guān)于n的解析式;
(2 )證明:a1+a2+a3+…+an<3
(3)設(shè)點(diǎn)P(n,an) {n≥3),在這些點(diǎn)中是否存在兩個(gè)點(diǎn)同時(shí)在函數(shù)y= 的圖象上?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案