已知a=4,b=2,且焦點在x軸上的橢圓標(biāo)準(zhǔn)方程為( 。
分析:依題意即可求得該橢圓的標(biāo)準(zhǔn)方程.
解答:解:∵橢圓的焦點在x軸上,且a=4,b=2,
∴其標(biāo)準(zhǔn)方程為:
x2
16
+
y2
4
=1.
故選C.
點評:本題考查橢圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=2,且
a
b
夾角為60°.
(1)求
a
b
;
(2)求(2
a
-
b
)•(
a
+
b
);
(3)若
a
-2
b
a
+k
b
垂直,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=2,|
a
-2
b
|=2,
a
b
的夾角為θ,則cosθ等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=2,且
a
b
的夾角θ為60°,求
(1)(
a
-2
b
)•(
a
+3
b
);
(2)
a
a
-
b
的夾角φ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4
,|
b
|=2
,且
a
b
夾角為120°,求
(1)|
a
+
b
|
;
(2)
a
a
+
b
的夾角.

查看答案和解析>>

同步練習(xí)冊答案