已知直線x-y+a=0與圓心為C的圓x2+y2+2x-4y-4=0相交于A、B兩點,且AC⊥BC,則實數(shù)a的值為
 
考點:直線和圓的方程的應(yīng)用
專題:直線與圓
分析:根據(jù)圓的標(biāo)準(zhǔn)方程,求出圓心和半徑,根據(jù)點到直線的距離公式即可得到結(jié)論.
解答: 解:圓的標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=9,圓心C(-1,2),半徑r=3,
∵AC⊥BC,
∴圓心C到直線AB的距離d=
2
2
×3=
3
2
2
,
即d=
|-1-2+a|
2
=
|a-3|
2
=
3
2
2
,
即|a-3|=3,
解得a=0或a=6,
故答案為:0或6.
點評:本題主要考查點到直線的距離公式的應(yīng)用,利用條件求出圓心和半徑,結(jié)合距離公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數(shù)關(guān)系:f(t)=10-
3
cos
π
12
t-sin
π
12
t,t∈[0,24).
(Ⅰ)求實驗室這一天上午8時的溫度;
(Ⅱ)求實驗室這一天的最大溫差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個命題:
①對于任意的a>0,b>0,都有algb=blga成立;
②直線y=x•tanα+b的傾斜角等于α;
③與兩條異面直線都平行且距離相等的平面有且只有一個;
④在平面內(nèi),如果將單位向量的起點移到同一個點,那么終點的軌跡是一個半徑為1的圓;
⑤已知函數(shù)y=f(x),若存在常數(shù)M>0,使|f(x)|<M•|x|對定義域內(nèi)的任意x均成立,則稱f(x)為“倍約束函數(shù)”.對于二次函數(shù)f(x)=x2+1,該函數(shù)是倍約束函數(shù).
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某程序框圖如圖所示,當(dāng)輸入50時,則該程序運(yùn)算后輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過圓外一點P作圓的切線PA(A為切點),再作割線PBC依次交圓于B、C,若PA=6,AC=8,BC=9,則AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量 x,y滿足約束條件
x-y+1≤0
x+2y-8≤0
x≥0
,則z=3x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx-1,若對于任意x∈[m,m+1],都有f(x)<0成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
2
≤φ<
π
2
)圖象上每一點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,再向右平移
π
6
個單位長度得到y(tǒng)=sinx的圖象,則f(
π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)為偶函數(shù)的是( 。
A、f(x)=x-1
B、f(x)=x2+x
C、f(x)=2x-2-x
D、f(x)=2x+2-x

查看答案和解析>>

同步練習(xí)冊答案