【題目】已知函數(shù),為自然對數(shù)的底數(shù)).

1)若曲線在點處的切線與直線垂直,求的單調(diào)區(qū)間;

2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍;

【答案】1單調(diào)遞增區(qū)間是,無單調(diào)遞減區(qū)間;(2.

【解析】

1)求出,由已知可得,進而求出,求出的解,解不等式,即可得出結(jié)論;

2)函數(shù)有兩個極值點,即有兩個不同的解,分離參數(shù),轉(zhuǎn)化為兩個函數(shù)交點,即可求解.

(1),

直線的斜率為,

依題意有

,設(shè)

時,單調(diào)遞增,

時,單調(diào)遞減,

所以時,取得極小值,也是最小值,

,所以單調(diào)遞增,

單調(diào)遞增區(qū)間是,無單調(diào)遞減區(qū)間;

2)函數(shù)有兩個極值點,

有兩個不同的解,

,令

等價于有兩個不同的交點,

,

,

遞增區(qū)間時,遞減區(qū)間時

時,取得極大值,也是最大值為,

時,,

所以當時,有兩個交點,

兩個不同的解,

所以函數(shù)有兩個極值點,實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,上位于第一象限的任意一點,過點的直線于另一點,交軸的正半軸于點

(1)若當點的橫坐標為,且為等邊三角形,求的方程;

(2)對于(1)中求出的拋物線,若點,記點關(guān)于軸的對稱點為,軸于點,且,求證:點的坐標為,并求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《基礎(chǔ)教育課程改革綱要(試行)》將“具有良好的心理素質(zhì)”列入新課程的培養(yǎng)目標.為加強心理健康教育工作的開展,不斷提高學生的心理素質(zhì),九江市某校高二年級開設(shè)了《心理健康》選修課,學分為2.學校根據(jù)學生平時上課表現(xiàn)給出“合格”與“不合格”兩種評價,獲得“合格”評價的學生給予50分的平時分,獲得“不合格”評價的學生給予30分的平時分,另外還將進行一次測驗.學生將以“平時分×40%+測驗分×80%”作為“最終得分”,“最終得分”不少于60分者獲得學分.

該校高二(1)班選修《心理健康》課的學生的平時份及測驗分結(jié)果如下:

測驗分

[30,40

[40,50

[5060

[60,70

[7080

[80,90

[90,100]

平時分50分人數(shù)

0

3

4

4

2

平時分30分人數(shù)

1

0

0

1)根據(jù)表中數(shù)據(jù)完成如下2×2列聯(lián)表,并分析是否有95%的把握認為這些學生“測驗分是否達到60分”與“平時分”有關(guān)聯(lián)?

選修人數(shù)

測驗分

達到60

測驗分

未達到60

合計

平時分50

平時分30

合計

2)若從這些學生中隨機抽取1人,求該生獲得學分的概率.

附:,其中

0.1

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即終止.若摸出白球,則記2分,若摸出黑球,則記1分.每個球在每一次被取出的機會是等可能的.

(1)求袋中白球的個數(shù);

(2)用表示甲,乙最終得分差的絕對值,求隨機變量的概率分布列及數(shù)學期望E

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市調(diào)查機構(gòu)在某設(shè)置過街天橋的路口隨機調(diào)查了110人準備過馬路的交通參與者對跨越護欄和走過街天橋的看法,得到如下列聯(lián)表:

合計

走過街天橋

40

20

60

跨越護欄

20

30

50

合計

60

50

110

附:.

0.050

0.010

0.001

K

3.841

6.635

10.828

則可以得到正確的結(jié)論是( )

A.有99%以上的把握認為“選擇過馬路的方式與性別有關(guān)”

B.有99%以上的把握認為“選擇過馬路的方式與性別無關(guān)”

C.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別有關(guān)”

D.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1,2,3,45,6組成數(shù)字不重復的六位數(shù),滿足1不在左右兩端,2,46三個偶數(shù)中有且只有兩個偶數(shù)相鄰,則這樣的六位數(shù)的個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為積極響應(yīng)國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議,為調(diào)查該校學生每周平均體育運動時間的情況,從高一高二(非畢業(yè)年級)與高三(畢業(yè)年級)共三個年級學生中按照的比例分層抽樣,收集位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時),得到如圖所示的頻率分布直方圖.(已知高一年級共有名學生)

1)據(jù)圖估計該校學生每周平均體育運動時間,并估計高一年級每周平均體育運動時間不足小時的人數(shù);

2)規(guī)定每周平均體育運動時間不少于小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有位高三學生的每周平均體育運動時間不少于小時,請完成下列列聯(lián)表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間是否優(yōu)秀與畢業(yè)年級有關(guān)”?

非畢業(yè)年級

畢業(yè)年級

合計

優(yōu)秀

非優(yōu)秀

合計

附:.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于PQ兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分13分已知函數(shù)。

,求曲線處切線的斜率;

的單調(diào)區(qū)間;

在區(qū)間上的最小值。

查看答案和解析>>

同步練習冊答案