【題目】已知集合,若對于任意實數(shù)對,存在,使成立,則稱集合是“垂直對點集” .給出下列四個集合:
① ;
②;
③ ;
④.
其中是“垂直對點集”的序號是( ).
A.①②③B.①②④C.①③④D.②③④
【答案】C
【解析】
由題意可得:集合是“垂直對點集”,即滿足:曲線上過任意一點與原點的直線,都存在過另一點與原點的直線與之垂直,對①、②、③、④逐個分析即可.
由題意知,若集合是“垂直對點集”,則對于任意,存在,使成立,因此,
①,其圖象向左向右和軸無限接近,向上和軸無限接近,據(jù)冪函數(shù)的圖象和性質(zhì)可知,在圖象上任取一點,連,過原點作的垂線必與的圖象相交,即一定存在點,使得成立,故是“垂直對點集”;
②,(),取,則不存在點(),滿足,因此不是“垂直對點集”;
③,其圖象過點,且向右向上無限延展,向左向下無限延展,據(jù)指數(shù)函數(shù)的圖象和性質(zhì)可知,在圖象上任取一點A,連OA,過原點作的垂線必與的圖象相交,即一定存在點,使得成立,故是“垂直對點集”;
④,在圖象上任取一點,連,過原點作直線的垂線,因為的圖象沿軸向左向右無限延展,且與軸相切,因此直線總會與的圖象相交,故是“垂直對點集”,
綜上可得:只有①③④是“垂直對點集”.
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校運(yùn)動會男生組田徑綜合賽以選手三項運(yùn)動的綜合積分高低決定排名.具體積分規(guī)則如表1所示,某代表隊四名男生的模擬成績?nèi)绫?/span>2.
表1 田徑綜合賽項目及積分規(guī)則
項目 | 積分規(guī)則 |
米跑 | 以秒得分為標(biāo)準(zhǔn),每少秒加分,每多秒扣分 |
跳高 | 以米得分為標(biāo)準(zhǔn),每多米加分,每少米扣分 |
擲實心球 | 以米得分為標(biāo)準(zhǔn),每多米加分,每少米扣分 |
表2 某隊模擬成績明細(xì)
姓名 | 100米跑(秒) | 跳高(米) | 擲實心球(米) |
甲 | |||
乙 | |||
丙 | |||
丁 |
根據(jù)模擬成績,該代表隊?wèi)?yīng)選派參賽的隊員是:( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,點A為橢圓C的左頂點,點B為橢圓C的上頂點,且|AB|=,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點,且OP⊥OQ,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的圖象與軸交點的橫坐標(biāo)構(gòu)成一個公差為的等差數(shù)列,把函數(shù)的圖象沿軸向左平移個單位,縱坐標(biāo)擴(kuò)大到原來的2倍得到函數(shù)的圖象,則下列關(guān)于函數(shù)的命題中正確的是( )
A.函數(shù)是奇函數(shù)B.的圖象關(guān)于直線對稱
C.在上是增函數(shù)D.當(dāng)時,函數(shù)的值域是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機(jī)構(gòu)對產(chǎn)品進(jìn)行質(zhì)量檢測,并依據(jù)質(zhì)量指標(biāo)來衡量產(chǎn)品的質(zhì)量.當(dāng)時,產(chǎn)品為優(yōu)等品;當(dāng)時,產(chǎn)品為一等品;當(dāng)時,產(chǎn)品為二等品.第三方檢測機(jī)構(gòu)在該產(chǎn)品中隨機(jī)抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標(biāo)的條形圖.用隨機(jī)抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.
(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機(jī)抽取1件,求該產(chǎn)品為優(yōu)等品的概率;
(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機(jī)構(gòu)對要購買的80件產(chǎn)品進(jìn)行抽樣檢測.買家、企業(yè)及第三方檢測機(jī)構(gòu)就檢測方案達(dá)成以下協(xié)議:從80件產(chǎn)品中隨機(jī)抽出4件產(chǎn)品進(jìn)行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費(fèi)用250元由企業(yè)承擔(dān).記企業(yè)的收益為元,求的分布列與數(shù)學(xué)期望;
(3)商場為推廣此款產(chǎn)品,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據(jù)拋硬幣的結(jié)果,操控機(jī)器人在方格上行進(jìn),已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、……、第50格.機(jī)器人開始在第0格,客戶每擲一次硬幣,機(jī)器人向前移動一次,若擲出正面,機(jī)器人向前移動一格(從到),若擲出反面,機(jī)器人向前移動兩格(從到),直到機(jī)器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束,若機(jī)器人停在“勝利大本營”,則可獲得優(yōu)惠券.設(shè)機(jī)器人移到第格的概率為,試證明是等比數(shù)列,并解釋此方案能否吸引顧客購買該款產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標(biāo)上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程,并求出曲線與公共弦所在直線的極坐標(biāo)方程;
(2)若射線與曲線交于兩點,與曲線交于點,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com