已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,
(1)求角A;
(2)若a=2,△ABC的面積為,求b,c.
【答案】分析:(1)把已知的等式利用正弦定理化簡,根據(jù)sinC不為0,得到一個關(guān)系式,再利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),利用特殊角的三角函數(shù)值求出A的度數(shù)即可;
(2)由A的度數(shù)求出sinA和cosA的值,由三角形ABC的面積,利用面積公式及sinA的值,求出bc的值,記作①;由a與cosA的值,利用余弦定理列出關(guān)系式,利用完全平方公式變形后,把bc的值代入求出b+c的值,記作②,聯(lián)立①②即可求出b與c的值.
解答:解:(1)由正弦定理==化簡已知的等式得:sinC=sinAsinC-sinCcosA,
∵C為三角形的內(nèi)角,∴sinC≠0,
sinA-cosA=1,
整理得:2sin(A-)=1,即sin(A-)=
∴A-=或A-=,
解得:A=或A=π(舍去),
則A=
(2)∵a=2,sinA=,cosA=,△ABC的面積為
bcsinA=bc=,即bc=4①;
∴由余弦定理a2=b2+c2-2bccosA得:4=b2+c2-bc=(b+c)2-3bc=(b+c)2-12,
整理得:b+c=4②,
聯(lián)立①②解得:b=c=2.
點評:此題考查了正弦、余弦定理,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,且(b+a+c)(b-a-c)+2
3
absinC=0

(1)求B
(2)若b=2,△ABC的面積為
3
,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面積為
3
,證明△ABC是正三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面積為
3
,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)已知a,b,c分別為△ABC三個內(nèi)角A、B、C所對的邊長,a,b,c成等比數(shù)列.
(1)求B的取值范圍;
(2)若x=B,關(guān)于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面積S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

同步練習(xí)冊答案