雙曲線x2-y2=2008的左、右頂點分別為A1、A2,P為其右支上一點,且∠A1PA2=4∠PA1A2,則∠PA1A2等于( )
A.
B.
C.
D.無法確定
【答案】分析:設a2=2008,根據(jù)題意可表示A1,A2坐標,設出P坐標,則可分別表示出PA1和PA2的斜率,二者乘求得 ,根據(jù)雙曲線方程可知 =1,進而可推斷出-tan∠PA1A2tan∠PA2A1=1.從而tan∠PA1A2tan(5∠PA1A2)=1
最后得出5∠PA1A2=-∠PA1A2即可求得∠PA1A2
解答:解:設a2=2008,
A1(-a,0),A2(a,0),P(x,y),
kPA1=tan∠PA1A2=,①
kPA2=-tan∠PA2A1=,②
由x2-y2=a2=1,
①×②,得-tan∠PA1A2tan∠PA2A1=1,
∴tan∠PA1A2tan(5∠PA1A2)=1
即tan(5∠PA1A2)=tan( -∠PA1A2
∴5∠PA1A2=-∠PA1A2
∴∠PA1A2=
故選A.
點評:本題以雙曲線為載體,主要考查了雙曲線的簡單性質(zhì),解析幾何的基礎知識.題中靈活的利用了雙曲線的方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.
(Ⅰ)若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;
(Ⅱ)在x軸上是否存在定點C,使
CA
CB
為常數(shù)?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•崇明縣二模)若拋物線y2=2px(p>0)的焦點與雙曲線x2-y2=2的右焦點重合,則p的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線x2-y2=2的右焦點F作傾斜角為300的直線,交雙曲線于P,Q兩點,則|PQ|的值為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(4,3),且P是雙曲線x2-y2=2上一點,F(xiàn)2為雙曲線的右焦點,則|PA|+|PF2|的最小值是
 

查看答案和解析>>

同步練習冊答案