本小題主要考察雙曲線的定義和性質(zhì)、直線與雙曲線的關(guān)系、點(diǎn)到直線的距離等知識(shí)及解析幾何的基本思想、方法和綜合解決問(wèn)題的能力。
解:由雙曲線的定義可知,曲線是以為焦點(diǎn)的雙曲線的左支,
且,易知
故曲線的方程為
設(shè),由題意建立方程組
消去,得
又已知直線與雙曲線左支交于兩點(diǎn),有
解得
又∵
依題意得 整理后得
∴或 但 ∴
故直線的方程為
設(shè),由已知,得
∴
又,
∴點(diǎn)
將點(diǎn)的坐標(biāo)代入曲線的方程,得
得,但當(dāng)時(shí),所得的點(diǎn)在雙曲線的右支上,不合題意
∴,點(diǎn)坐標(biāo)為
到的距離為
∴的面積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
|
|
AB |
AB |
1 | ||
(x+y
|
1 | ||
(x-y
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知曲線E上任意一點(diǎn)到兩個(gè)定點(diǎn)和的距離之和為4.21世紀(jì)教育網(wǎng)
(1)求曲線E的方程;
(2)設(shè)過(guò)的直線與曲線E交于、兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓:,過(guò)圓內(nèi)定點(diǎn)P(2,1)作兩條相互垂直的弦AC和BD,那么四邊形ABCD面積最大值為( )
A.21 B. C. D.42查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com