10.設(shè)函數(shù)f(x)=mx2-mx-1.若對一切實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍.

分析 通過討論m=0成立,m≠0時,結(jié)合二次函數(shù)的性質(zhì)求出m的范圍即可.

解答 解:m=0時f(x)=-1<0成立;
或m≠0時,結(jié)合題意得:
$\left\{\begin{array}{l}{m<0}\\{△={m}^{2}+4m<0}\end{array}\right.$,即$\left\{\begin{array}{l}{m<0}\\{-4<m<0}\end{array}\right.$,
解得-4<m<0;
m>0時,不等式不恒成立.
綜上可得-4<m≤0,
因此實(shí)數(shù)m的取值范圍(-4,0].

點(diǎn)評 本題考查二次函數(shù)與二次不等式的關(guān)系,考查分類討論思想方法,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ln(x+m)-x(m為常數(shù))在x=0處取得極值.
(Ⅰ)求實(shí)數(shù)m的取值;
(Ⅱ)求當(dāng)x∈[$-\frac{1}{2}$,+∞)時,函數(shù)g(x)=f(x)-x2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.點(diǎn)P(1,0)到直線x-y-3=0的距離為(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.欲測量河寬即河岸之間的距離(河的兩岸可視為平行),受地理?xiàng)l件和測量工具的限制,采用如下辦法:如圖所示,在河的一岸邊選取A,B兩個觀測點(diǎn),觀察對岸的點(diǎn)C,測得∠CAB=75°,∠CBA=45°,AB=120米,由此可得河寬約為(精確到1米,參考數(shù)據(jù)$\sqrt{6}$≈2.45,sin75°≈0.97)(  )
A.170米B.110米C.95米D.80米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn),F(xiàn)為B1C1的中點(diǎn).
(1)求證:平面B1A1C⊥平面EA1C;
(2)求二面角E-A1C-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.(1-$\frac{1}{{x}^{2}}$)(1+x)6展開式中x2的系數(shù)為( 。
A.-15B.0C.15D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知不等式ax2+bx-1<0的解集為{x|-1<x<2}.
(1)計算a、b的值;
(2)求解不等式x2-ax+b>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.
(1)求證:sin3B=3sinB-4sin3B;
(2)若A=2B,b=3c,求sin(B-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.等比數(shù)列{an}的各項(xiàng)都是正數(shù),2a5,a4,4a6成等差數(shù)列,且滿足${a_4}=4{a_3}^2$,數(shù)列{bn}的前n項(xiàng)和為${S_n}=\frac{{(n+1){b_n}}}{2}$,n∈N*,且b1=1
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)設(shè)${c_n}=\frac{{{b_{2n+5}}}}{{{b_{2n+1}}{b_{2n+3}}}}{a_n}$,n∈N*,{Cn}前n項(xiàng)和為$\sum_{k=1}^n{c_k}$,求證:$\sum_{k=1}^n{{c_k}<\frac{1}{3}}$.

查看答案和解析>>

同步練習(xí)冊答案