點(diǎn)(xi,yi)(i=1,2,…,10)的坐標(biāo)分別為
(10,62),(20,68),(30,75),(40,81),(50,89),(60,95),(70,102),(80,108),(90,115),(100,122).
(1)y與x是否具有線性相關(guān)關(guān)系?
(2)如果y與x具有線性相關(guān)關(guān)系,求回歸直線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-2-3人教A版 人教A版 題型:013
下列說法錯(cuò)誤的是
如果變量η與ξ之間存在著線性相關(guān)關(guān)系,則我們根據(jù)實(shí)驗(yàn)數(shù)據(jù)得到的點(diǎn)(xi,yi)(i=1,2,3,…,n)將散布在某一條直線的周圍
如果變量η與ξ之間不存在著線性相關(guān)關(guān)系,則我們根據(jù)實(shí)驗(yàn)數(shù)據(jù)得到的點(diǎn)(xi,yi)(i=1,2,3,…,n),不能寫出一個(gè)線性方程
設(shè)x、y是具有相關(guān)關(guān)系的兩個(gè)變量,且x關(guān)于y的線性回歸方程是y^=bx+a,則b叫做回歸系數(shù)
為使求出的線性回歸方程有意義,可用統(tǒng)計(jì)假設(shè)檢驗(yàn)的方法來判斷變量η與ξ之間是否存在線性相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:遼寧省沈陽(yáng)二中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:022
設(shè)y=f(x)為區(qū)間[0,1]上的連續(xù)函數(shù),且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計(jì)算積分,先產(chǎn)生兩組(每組N個(gè))區(qū)間[0,1]上的均勻隨機(jī)數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個(gè)點(diǎn)(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yi≤f(xi)(i=1,2,…,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法計(jì)算積分的近似值為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)y=f(x)為區(qū)間[0,1]上的連續(xù)函數(shù),且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計(jì)算積分dx.先產(chǎn)生兩組(每組N個(gè))區(qū)間[0,1]上的均勻隨機(jī)數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個(gè)點(diǎn)(xi,yi)(i=1,2,…,N),再數(shù)出其中滿足yi≤f(xi)(i=1,2,…,N)的點(diǎn)的個(gè)數(shù)N1,那么由隨機(jī)模擬方法可得積分dx的近似值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)y=f(x)在區(qū)間[0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機(jī)模擬方法近似計(jì)算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S.先產(chǎn)生兩組(每組N個(gè))區(qū)間[0,1]上的均勻隨機(jī)數(shù)x1,x2,…,xN和y1,y2,…,yN,由此得到N個(gè)點(diǎn)(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足yi≤f(xi)(i=1,2,…,N)的點(diǎn)數(shù)N1,那么由隨機(jī)模擬方法可得S的近似值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com