【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是.

(1)求油罐被引爆的概率

(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,的分布列及.( 結(jié)果用分?jǐn)?shù)表示)

【答案】(1)(2)分布列見解析,.

【解析】

試題分析:(1)借助題設(shè)條件運用獨立重復(fù)試驗及對立事件的概率公式求解;(2)借助題設(shè)運用隨機變量的數(shù)學(xué)期望公式探求.

試題解析:

(1)設(shè)命中油罐的次數(shù)為,則當(dāng)時,油罐不能被引爆

,

,

油罐被引爆的概率.

(2)射擊次數(shù)的取值為2,3,4,5.

,

,

,

.

因此,的分布列為:

2

3

4

5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù),在以原點為極點,軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1求圓的普通方程和直線的直角坐標(biāo)方程;

2設(shè)直線軸,軸分別交于兩點,點是圓上任一點,求兩點的極坐標(biāo)和面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是公差為3的等差數(shù)列,數(shù)列{bn}是b1=1的等比數(shù)列,且.

分別求數(shù)列{an},{bn}的通項公式;

令cn= an bn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護環(huán)境,2015年合肥市勝利工廠在市政府的大力支持下,進行技術(shù)改進:把二氧化碳轉(zhuǎn)化為某種化工產(chǎn)品,經(jīng)測算,該處理成本(萬元)與處理量(噸)之間的函數(shù)關(guān)系可近似地表示為:且每處理一噸二氧化碳可得價值為20萬元的某種化工產(chǎn)品.

(1)當(dāng)時,判斷該技術(shù)改進能否獲利?如果能獲利,求出最大利潤;如果不能獲利,則國家至少需要補貼多少萬元,該工廠才不虧損?

(2)當(dāng)處理量為多少噸時,每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中.

當(dāng)時,若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;

當(dāng)時,是否存在實數(shù),使得當(dāng)時,不等式恒成立,如果存在,求的取值范圍,如果不存在,說明理由其中是自然對數(shù)的底數(shù),=2.71828.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程兩個不等的負(fù)根;方程實根.若”為真,“假,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,點為坐標(biāo)原點,若橢圓與曲線的交點分別為上),且兩點滿足

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓上異于其頂點的任一點,作的兩條切線,切點分別為,且直線軸、軸上的截距分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在冬季供暖時減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:)滿足關(guān)系:,若不建隔熱層,每年能源消耗費用為8萬元,設(shè)為隔熱層建造費用與20年的能源消耗費用之和.

(1)求的值及的表達式;

(2)隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

同步練習(xí)冊答案