7.已知等軸雙曲線C的一個(gè)焦點(diǎn)是F1(-6,0),點(diǎn)M是等軸雙曲線的漸近線上的一個(gè)動點(diǎn),點(diǎn)P是圓(x+6)2+y2=1上的任意一點(diǎn),則|PM|的最小值是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{3}$-1C.3$\sqrt{3}$+1D.2$\sqrt{3}$+2

分析 求出等軸雙曲線的漸近線方程,求得圓的圓心和半徑,求出圓心C到漸近線的距離d,結(jié)合圓的對稱性,可得最小值為d-r,即可得到所求值.

解答 解:由題意可得等軸雙曲線C的漸近線方程為y=±x,
圓(x+6)2+y2=1的圓心C為(-6,0),半徑r為1,
C到漸近線的距離為d=$\frac{|6|}{\sqrt{2}}$=3$\sqrt{2}$,
由點(diǎn)M是等軸雙曲線的漸近線上的一個(gè)動點(diǎn),
點(diǎn)P是圓(x+6)2+y2=1上的任意一點(diǎn).
可得|PM|的最小值是d-r=3$\sqrt{2}$-1.
故選:A.

點(diǎn)評 本題考查雙曲線的性質(zhì),主要是漸近線方程的運(yùn)用,考查點(diǎn)到直線的距離公式和最值的求法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x+2|,x∈R.
(1)解不等式f(2x)≤12-f(x-3);
(2)已知不等式f(2x)≤f(2x-3)+|x+a|的解集為M,且$M∩({\frac{1}{2},1})≠∅$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=(x-a)•ex,a∈R.
(Ⅰ)當(dāng)a=1時(shí),試求f(x)的單調(diào)增區(qū)間;
(Ⅱ)試求f(x)在[1,2]上的最大值;
(Ⅲ)當(dāng)a=1時(shí),求證:對于?x∈[-5,+∞),$f(x)+x+5≥-\frac{6}{e^5}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的奇函數(shù)f(x)滿足當(dāng)x≥0時(shí),f(x)=1og2(x+2)+x+b,則|f(x)|>3的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-∞,-,4)∪(4,+∞)C.(-2,2)D.(-4,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足$\frac{{\sqrt{2}c-a}}{cosA}=\frac{cosB}$,D是BC邊上的一點(diǎn).
(Ⅰ) 求角B的大;
(Ⅱ) 若AC=7,AD=5,DC=3,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中正確的是( 。
A.$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{AB}$B.$\overrightarrow{AB}$=$\overrightarrow{BA}$C.$\overrightarrow{0}$•$\overrightarrow{AB}$=$\overrightarrow{0}$D.$\overrightarrow{AB}+\overrightarrow{BC}$$+\overrightarrow{CD}$=$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z1=2+6i,z2=-2i,若z1,z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)分別為A,B,線段AB的中點(diǎn)C對應(yīng)的復(fù)數(shù)為z,則|z|=( 。
A.$\sqrt{5}$B.5C.2$\sqrt{5}$D.2$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
(1)求證:CE∥平面PAB;
(2)求三棱錐P-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在幾何體A1B1C1-ABC中,△ABC為等邊三角形,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1
(Ⅰ)求證:平面A1B1C1⊥平面A1ABB1;
(Ⅱ)F為線段BB1上一點(diǎn),當(dāng)A1B1∥平面ACF時(shí),求$\frac{{B}_{1}F}{{B}_{1}B}$的值.

查看答案和解析>>

同步練習(xí)冊答案