在三棱錐P-ABC內(nèi),已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中點.

(1)求直線PE與AC所成角的余弦值;
(2)求直線PB與平面ABC所成的角的正弦值;
(3)求點C到平面PAB的距離.
解:(1)分別取AB,AC的中點F,H,連結(jié)PH,HF,HE,EF
      由于E、F分別是BC、AB的中點,故EF是△ABC的中位線,則有EF//AC,
      故∠PEF是異面直線PE與AC所成的角或補角
 
(2)由于PA=PC,H是AC的中點,
有PH⊥AC
又由面PAC⊥面ABC
面PAC∩面ABC=AC
有PH⊥面ABC
∠PBH是直線PB與平面ABC所成的角

(3)VP-ABC=VC-PAB
 可解得:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間中垂直于同一條直線的兩條直線的位置關(guān)系是
A.平行B.相交C.異面D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間點到平面的距離如下定義:過空間一點作平面的垂線,該點和垂足之間的距離即為該點到平面的距離.平面,兩兩互相垂直,點,點,的距離都是,點上的動點,滿足的距離是到到點距離的倍,則點的軌跡上的點到的距離的最小值為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列幾何體的三視圖中,有且僅有兩個視圖相同的是     (   )
A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為直線,為平面,給出下列命題:
 ② ③ ④
其中的正確命題序號是(      )9
A.③④B.②③   C.①②    D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體的側(cè)面內(nèi)有一動點到直線與直線的距離相等,則動點 所在的曲線的形狀為…………(     )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在六面體中,平面∥平面,平面,,,,且,

(1)求證:平面平面;
(2)求證:∥平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本小題滿分13分)
如圖,已知ABCD是邊長為2的正方形,平面ABCD,平面ABCD,且FB=2DE=2。

(1)求點E到平面FBC的距離;
(2)求證:平面平面AFC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

用一張圓弧長等于  分米,半徑是10分米的扇形膠片制作一個圓錐體模型,這個圓錐體的體積等于_    __立方分米.

查看答案和解析>>

同步練習(xí)冊答案