【題目】已知數(shù)列1121,2,4,1,24,8,12,4,816,…,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,,再接下來(lái)的三項(xiàng)是,,,依此類推,若該數(shù)列前項(xiàng)和滿足:①2的整數(shù)次冪,則滿足條件的最小的

A. 21B. 91C. 95D. 10

【答案】C

【解析】

構(gòu)造數(shù)列,使得:,,,求出數(shù)列的前項(xiàng)和,根據(jù)題意可表示出原數(shù)列的關(guān)系,以及原數(shù)列前和與數(shù)列的前項(xiàng)和的關(guān)系,討論出滿足條件的的最小值即可。

根據(jù)題意構(gòu)造數(shù)列,使得:,,,,

,,,,所以數(shù)列的前項(xiàng)和令數(shù)列1,1,2,12,4,1,2,48,12,4,8,16,…,為,

根據(jù)題意可得:,,則數(shù)列的前項(xiàng)和,

所以要使數(shù)列項(xiàng)和滿足:,則,則,故,故D答案不對(duì)。

由于2的整數(shù)次冪,則,則,則

當(dāng)時(shí),則,解得:,,

故滿足條件的最小的為95,

故答案選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)軸上,中心在坐標(biāo)原點(diǎn),長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在過(guò)的直線,使得直線與橢圓交于,?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若相交于兩點(diǎn),設(shè)點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬(wàn)元.為增加企業(yè)競(jìng)爭(zhēng)力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤(rùn)為萬(wàn)元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高

(1)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(2)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來(lái)1000名員工創(chuàng)造的年總利潤(rùn)條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法正確的是(  )

A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”

B.x=-1”是“x2-5x-6=0”的必要不充分條件

C.命題“若xy,則sin x=sin y”的逆否命題為真命題

D.命題“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù))和定點(diǎn),是曲線的左、右焦點(diǎn),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同單位長(zhǎng)度建立極坐標(biāo)系.

1)求直線的極坐標(biāo)方程;

2)經(jīng)過(guò)點(diǎn)且與直線垂直的直線交曲線兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍,得到的圖象,下面四個(gè)結(jié)論正確的是( )

A. 函數(shù)在區(qū)間上為增函數(shù)

B. 將函數(shù)的圖象向右平移個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱

C. 點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心

D. 函數(shù)上的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】啟東市政府?dāng)M在蝶湖建一個(gè)旅游觀光項(xiàng)目,設(shè)計(jì)方案如下:如圖所示的圓O是圓形湖的邊界,沿線段AB,BC,CD,DA建一個(gè)觀景長(zhǎng)廊,其中A,B,C,D是觀景長(zhǎng)廊的四個(gè)出入口且都在圓O上,已知:BC=12百米,AB=8百米,在湖中P處和湖邊D處各建一個(gè)觀景亭,且它們關(guān)于直線AC對(duì)稱,在湖面建一條觀景橋APC.觀景亭的大小、觀景長(zhǎng)廊、觀景橋的寬度均忽略不計(jì),設(shè)

1)若觀景長(zhǎng)廊AD4百米,CD=AB,求由觀景長(zhǎng)廊所圍成的四邊形ABCD內(nèi)的湖面面積;

2)當(dāng)時(shí),求三角形區(qū)域ADC內(nèi)的湖面面積的最大值;

3)若CD=8百米且規(guī)劃建亭點(diǎn)P在三角形ABC區(qū)域內(nèi)(不包括邊界),試判斷四邊形ABCP內(nèi)湖面面積是否有最大值?若有,求出最大值,并寫(xiě)出此時(shí)的值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案