12.命題“?x0∈R,x02+2x0-3>0”的否定形式為?x∈R,x2+2x-3≤0.

分析 根據(jù)特稱命題的否定是全稱命題進(jìn)行求解即可.

解答 解:特稱命題的否定是全稱命題,
即命題的否定為:?x∈R,x2+2x-3≤0,
故答案為:?x∈R,x2+2x-3≤0

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.“若x2=1,則x=1”的否命題為( 。
A.若x2≠1,則x=1B.若x2=1,則x≠1C.若x2≠1,則x≠1D.若x≠1,則x2≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2x({x≥0})\\ g(x)({x<0})\end{array}$為奇函數(shù),則g(-1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,點(diǎn)D在BC邊上,AD平分∠BAC,AB=6,AD=3$\sqrt{2}$,AC=4.
(1)利用正弦定理證明:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.命題p:“若a≥b,則a+b>2012且a>-b”的逆否命題是(  )
A.若a+b≤2 012且a≤-b,則a<bB.若a+b≤2 012且a≤-b,則a>b
C.若a+b≤2 012或a≤-b,則a<bD.若a+b≤2 012或a≤-b,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=x2-2ax+b(x∈R),給出下列命題:
①存在實(shí)數(shù)ɑ,使f(x)為偶函數(shù).
②若f(0)=f(2),則 f(x)的圖象關(guān)于x=1對(duì)稱.
③若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù)
④若a2-b-2>0,則函數(shù)h(x)=f(x)-2有2個(gè)零點(diǎn).
其中正確命題的序號(hào)為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ為參數(shù))$,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的$\sqrt{3}$、2倍后得到曲線C2;試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,AB=2,SA=SB=SC=2,則三棱錐的外接球的球心到平面ABC的距離是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題中正確的是( 。
A.過(guò)三點(diǎn)確定一個(gè)平面B.四邊形是平面圖形
C.三條直線兩兩相交則確定一個(gè)平面D.兩個(gè)相交平面把空間分成四個(gè)區(qū)域

查看答案和解析>>

同步練習(xí)冊(cè)答案