【題目】如圖,在三棱柱中,已知,分別為線段的中點,所成角的大小為90°,且.

求證:(1)平面平面;

2平面.

【答案】1)見解析;(2)見解析

【解析】

1)推導出,,從而平面,由此能證明平面平面

2)取中點,連結,,推導出四邊形是平行四邊形,從而,由此能證明平面

證明:(1)因為所成角的大小為90°,所以,

因為,且NA1C的中點,所以.

、平面,

⊥平面,

因為平面,所以平面⊥平面.

2)取AC中點P,連結NPBP.

因為NA1C中點,PAC中點,所以PN//AA1,且PNAA1.

在三棱柱中,BB1 // AA1,且BB1AA1.

MBB1中點,故BM // AA1,且BMAA1.

所以PN // BM,且PNBM,于是四邊形PNMB是平行四邊形,

從而MN // BP.

平面,平面,

平面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某人某天的工作是駕車從地出發(fā),到兩地辦事,最后返回地,,三地之間各路段行駛時間及擁堵概率如下表

路段

正常行駛所用時間(小時)

上午擁堵概率

下午擁堵概率

1

03

06

2

02

07

3

03

09

若在某路段遇到擁堵,則在該路段行駛時間需要延長1小時.

現(xiàn)有如下兩個方案:

方案甲:上午從地出發(fā)到地辦事然后到達地,下午從地辦事后返回地;

方案乙:上午從地出發(fā)到地辦事,下午從地出發(fā)到達地,辦完事后返回地.

1)若此人早上8點從地出發(fā),在各地辦事及午餐的累積時間為2小時,且采用方案甲,求他當日18點或18點之前能返回地的概率.

2)甲乙兩個方案中,哪個方案有利于辦完事后更早返回地?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代數(shù)學名著,它在幾何學中的研究比西方早1000多年,在《九章算術》中,將底面為直角三角形,且側棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽馬;

(2)若,當鱉膈體積最大時,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,點F為拋物線C1的焦點,且拋物線C1上點P處的切線與圓C2相切于點Q.

當直線PQ的方程為時,求 拋物線C1的方程;

當正數(shù)P變化時,記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)設函數(shù),若,求的極值;

2)設函數(shù),若的圖象與的圖象有,兩個不同的交點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代科學家祖沖之兒子祖暅在實踐的基礎上提出了體積計算的原理:“冪勢既同,則積不容異”(“冪”是截面積,“勢”是幾何體的高),意思是兩個同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿足“冪勢既同”,則該不規(guī)則幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形所在的平面與半圓弧所在平面垂直,上異于,的點.

(1)證明:平面平面;

(2)當三棱錐體積最大時,求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,動點、兩點連線的斜率之積為.

1)求點的軌跡的方程;

2)已知點是軌跡上的動點,點在直線上,且滿足(其中為坐標原點),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x3a2+a+2x2+a2a+2x,aR

1)當a=1時,求函數(shù)y=fx)的單調區(qū)間;

2)求函數(shù)y=fx)的極值點.

查看答案和解析>>

同步練習冊答案