與直線相交于A、B兩點(diǎn),則線段AB的垂直平分線的方程是(   )

A.                       B.

C.                       D.

 

【答案】

A

【解析】

試題分析:根據(jù)題意,圓與直線相交于A、B兩點(diǎn),那么可知聯(lián)立方程組,結(jié)合韋達(dá)定理的中點(diǎn)縱坐標(biāo),然后結(jié)合的斜率為,可知所求的直線的斜率為,排除B,C,然后將中點(diǎn)坐標(biāo)代入可知選A.

考點(diǎn):直線方程的求解

點(diǎn)評:解決的關(guān)鍵是利用弦中點(diǎn)與圓心的連線與線段AB的垂直平分線垂直可知得到斜率,再結(jié)合中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•湛江二模)如圖,F(xiàn)是定直線l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過A、B分別作l的垂線與圓C過F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第三次月考理科數(shù)學(xué)試卷 題型:解答題

如圖,橢圓的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓與直線相交于A、B兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)求面積的最大值;

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三下學(xué)期開學(xué)檢測理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)如圖,橢圓的中心在坐標(biāo)原點(diǎn),其中一個(gè)焦點(diǎn)為圓的圓心,右頂點(diǎn)是圓F與x軸的一個(gè)交點(diǎn).已知橢圓與直線相交于A、B兩點(diǎn).

 

 

(Ⅰ)求橢圓的方程;

(Ⅱ)求面積的最大值;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省慈溪中學(xué)高一下學(xué)期期中考試數(shù)學(xué)(8-13班) 題型:解答題

(本題滿分15分)在直角坐標(biāo)系中,以為圓心的圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)圓軸相交于A、B兩點(diǎn),圓內(nèi)的動(dòng)點(diǎn)P使|PA|、|PO|、|PB| 成等比數(shù)列,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案