【題目】(本小題滿分12分)某商場為了了解顧客的購物信息,隨機(jī)的在商場收集了100位顧客購物的相關(guān)數(shù)據(jù),整理如下:
一次購物款(單位:元) | [0,50) | [50,100) | [100,150) | [150,200) | [200,+∞) |
顧客人數(shù) | m | 20 | 30 | n | 10 |
統(tǒng)計結(jié)果顯示100位顧客中購物款不低于100元的顧客占60%,據(jù)統(tǒng)計該商場每日大約有5000名顧客,為了增加商場銷售額度,對一次性購物不低于100元的顧客發(fā)放紀(jì)念品(每人一件).(注:視頻率為概率)
(1)試確定的值,并估計該商場每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(2)為了迎接店慶,商場進(jìn)行讓利活動,一次購物款200元及以上的一次返利30元;一次性購物
款小于200元的按購物款的百分比返利,具體見下表:
一次購物款(單位:元) | [0,50) | [50,100) | [100,150) | [150,200) |
返利百分比 | 0 | 6% | 8% | 10% |
估計該商場日均讓利多少元?
【答案】(1)3000;(2)52000.
【解析】
試題本題主要考查統(tǒng)計表、頻率、頻率分布直方圖等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,先利用100位顧客中購物款不低于100元的顧客占60%,則,則可求出n的值,再利用總數(shù)為100,得到m的值,不低于100元的顧客占60%,則用得到紀(jì)念品數(shù)量;第二問,先分別求出每個購物區(qū)間在5000人中分別有多少人,再用區(qū)間的平均數(shù)返利百分比求出的人數(shù),得到結(jié)論.
試題解析:(1)100位顧客中購物款不低于100元的顧客有,;
.
該商場每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量大約為.
(2)設(shè)購物款為元,當(dāng)時,顧客有人,
當(dāng)時,顧客有人,
當(dāng)時,顧客有人,
當(dāng)時,顧客有人,
所以估計日均讓利為 元
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為且經(jīng)過點分別是的右頂點和上頂點,過原點的直線與交于兩點(點在第一象限),且與線段交于點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求直線的方程;
(3)若的面積是的面積的倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) (k為常數(shù))
(1)當(dāng)時,求函數(shù)的最值;
(2)若,討論函數(shù)的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.
(1)求動圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,且,橢圓經(jīng)過點.
(1)求橢圓的方程;
(2)直線過橢圓右頂點,交橢圓于另一點,點在直線上,且.若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等邊三角形ABC的邊長為,分別為的中點,將沿折起得到四棱錐.點P為四棱錐的外接球球面上任意一點,當(dāng)四棱錐的體積最大時,點P到平面距離的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點( )
A.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
B.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變
C.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
D.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,且橢圓的離心率為,過作軸的垂線與橢圓交于兩點,且,動點在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的左、右頂點分別為,且直線的斜率分別與直線(為坐標(biāo)原點)的斜率相同,動點不與重合,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬只)與時間(年)(其中)的關(guān)系為.為有效控制有害昆蟲數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門通過實時監(jiān)控比值(其中為常數(shù),且)來進(jìn)行生態(tài)環(huán)境分析.
(1)當(dāng)時,求比值取最小值時的值;
(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當(dāng)比值不超過時不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實數(shù)的取值范圍.(為自然對數(shù)的底, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com