雙曲線的漸近線方程為,焦距為,這雙曲線的方程為        

分析:分別看焦點在x軸和y軸時,整理直線方程求得雙曲線方程中a和b的關(guān)系式,進而根據(jù)焦距求得a和b的另一關(guān)系式,聯(lián)立求得a和b,則雙曲線的方程可得.
解:當焦點在x軸時,求得a=,b=
,雙曲線方程為
當焦點在y軸時,求得a=,b=,雙曲線方程為
∴雙曲線的方程為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一條線段AB的長為2,兩個端點A和B分別在x軸和y軸上滑動,則線段AB的中點的軌跡是(  )
A.雙曲線B.雙曲線的一分支
C.圓D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別是橢圓C:的左焦點和右焦點,O是坐標系原點, 且橢圓C的焦距為6, 過的弦AB兩端點A、B與所成的周長是.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點是橢圓C上不同的兩點,線段的中點為,
求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上的一點軸的距離為12,則與焦點間的距離 =______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方體ABCD-A1B1C1D1中,P是側(cè)面BB1C1C內(nèi)一動點,若P到直線BC與直線C1D1的距離相等,則動點P的軌跡所在的曲線是(  。.
A.直線B.拋物線C.雙曲線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、正方體ABCD—A1B1C1D1的側(cè)面AB1內(nèi)有一點P到直線A1B1與直線BC的距離相等如圖(1),則動點P所在曲線的形狀大致為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線,則p的值為(  )                   
A.-2B.-4C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知點C(4,0)和直線 P是動點,作垂足為Q,且設(shè)P點的軌跡是曲線M。
(1)求曲線M的方程;
(2)點O是坐標原點,是否存在斜率為1的直線m,使m與M交于A、B兩點,且若存在,求出直線m的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F是橢圓的右焦點,橢圓上的點與點F的最大距離為M,最小距離為N,則橢圓
上與點F的距離等于的點的坐標是                                 (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案