如圖,
ADB
為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點,已知|AB|=4,曲線C過Q點,動點P在曲線C上運動且保持|PA|+|PB|的值不變.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)過點B的直線l與曲線C交于M、N兩點,與OD所在直線交于E點,若
EM
=λ1
MB
,
EN
=λ2
NB
,求證:λ1+λ2
為定值.
(Ⅰ)以AB、OD所在直線分別為x軸、y軸,O為原點,建立平面直角坐標(biāo)系,
∵動點P在曲線C上運動且保持|PA|+|PB|的值不變、且點Q在曲線C上,
∴|PA|+|PB|=|QA|+|QB|=2
22+12
=2
5
>|AB|=4、
∴曲線C是為以原點為中心,A、B為焦點的橢圓
設(shè)其長半軸為a,短半軸為b,半焦距為c,則2a=2
5
,∴a=
5
,c=2,b=1、
∴曲線C的方程為
x2
5
+y2=1(5分)
(Ⅱ):設(shè)M,N,E點的坐標(biāo)分別為M(x1,y1),N(x2,y2),E(0,y0),
又易知B點的坐標(biāo)為(2,0)、且點B在橢圓C內(nèi),故過點B的直線l必與橢圓C相交、
EM
=λ1
MB
,∴(x1,y1-y0)=λ1(2-x1,-y1)、
x1=
2λ1
1+λ1
,y1=
y0
1+λ1
、(7分)
將M點坐標(biāo)代入到橢圓方程中得:
1
5
(
2λ1
1+λ1
)2+(
y0
1+λ1
)2=1
,
去分母整理,得λ12+10λ1+5-5y02=0、(10分)
同理,由
EN
=λ2
NB
可得:λ22+10λ2+5-5y02=0、
∴λ1,λ2是方程x2+10x+5-5y02=0的兩個根,
∴λ12=-10、(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點M(-1,0),N(1,0),動點P(x,y)滿足:|PM|•|PN|=
4
1+cos∠MPN
,
(1)求P的軌跡C的方程;
(2)是否存在過點N(1,0)的直線l與曲線C相交于A、B兩點,并且曲線C存在點Q,使四邊形OAQB為平行四邊形?若存在,求出平行四邊形OAQB的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
過點(
3
,
2
2
)
,它的離心率為
6
2
,P、Q分別在雙曲線的兩條漸近線上,M是線段PQ中點,|PQ|=2
2

(Ⅰ)求雙曲線及其漸近線方程;
(Ⅱ)求點M的軌跡C的方程;
(Ⅲ)過C左焦點F1的直線l與C相交于點A、B,F(xiàn)2為C的右焦點,求△ABF2面積最大時
F2A
F2B
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(A題)已知點P是圓x2+y2=4上一動點,直線l是圓在P點處的切線,動拋物線以直線l為準(zhǔn)線且恒經(jīng)過定點A(-1,0)和B(1,0),則拋物線焦點F的軌跡為( 。
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:
x2
a2
+
y2
b2
=1(a>b>0)

(Ⅰ)若橢圓的一個焦點到長軸的兩個端點的距離分別為2+
3
2-
3
,求橢圓的方程;
(Ⅱ)如圖,過坐標(biāo)原點O任作兩條互相垂直的直線與橢圓分別交于P、Q和R、S四點.設(shè)原點O到四邊形PRQS某一邊的距離為d,試求:當(dāng)d=1時
1
a2
+
1
b2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點F1(-
3
,0),F(xiàn)2
3
,0),動點R在曲線C上運動且保持|RF1|+|RF2|的值不變,曲線C過點T(0,1),
(Ⅰ)求曲線C的方程;
(Ⅱ)M是曲線C上一點,過點M作斜率分別為k1和k2的直線MA,MB交曲線C于A、B兩點,若A、B關(guān)于原點對稱,求k1•k2的值;
(Ⅲ)直線l過點F2,且與曲線C交于PQ,有如下命題p:“當(dāng)直線l垂直于x軸時,△F1PQ的面積取得最大值”.判斷命題p的真假.若是真命題,請給予證明;若是假命題,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓x2+y2=2上的動點,PD⊥x軸,垂足為D,M為線段PD上一點,且|PD|=
2
|MD|,點A、F1的坐標(biāo)分別為(0,
2
),(-1,0).
(1)求點M的軌跡方程;
(2)求|MA|+|MF1|的最大值,并求此時點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于直線L:y=kx+1是否存在這樣的實數(shù),使得L與雙曲線C:3x2-y2=1的交點A,B關(guān)于直線y=ax(a為常數(shù))對稱?若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過橢圓
x2
2
+y2=1
的左焦點F1的直線l交橢圓于A、B兩點.
(1)求
AO
AF1
的范圍;
(2)若
OA
OB
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案