見解析
由立體幾何知,
的中點
在過
的中點
且與
平行的平面
內,取
的中點
,過
作
∥
,
∥
,則
確定平面
,
,則
在
內的射影
必在
上,
在
的射影
必在
上,
的中點
必在
上,如圖所示,
,易得
,
現(xiàn)在求線段
移動時,中點
的軌跡。以∠
的平分線為
軸,
為坐標原點建立直角坐標系,如圖,不妨設
∠
,在△
中,由余弦定理得
,設
中點坐標為
,則
,得
,代入消去
得
(1) 當
,即
,兩異面直線垂直時,表示圓
(2) 當
,即
,兩異面直線不垂直時,
的軌跡是橢圓夾在∠
內的弧,同樣可以得到橢圓其余弧,故
軌跡是
的中垂面上以
為中心的橢圓
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,二面角D—AB—E的大小為
,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
⑴求證AE⊥平面BCE;
⑵求二面角B—AC—E的正弦值;
⑶求點D到平面ACE的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在三棱柱
中,側面
底面ABC,
,
,且
為AC中點。
(I) 證明:
平面ABC;
(II) 求直線
與平面
所成角的正弦值;
(III) 在
上是否存在一點E,使得
平面
,若不存在,說明理由;若存在,確定點E的位置。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在三棱柱
中,每個側面均為正方形,
為底邊
的中點,
為側棱
的中點.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在直三棱柱
中,
,
,
,點D是
的中點
⑴求證:
;
⑵求證:
平面
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖5所示,四棱錐
P-ABCD的底面
ABCD是半徑為
R的圓的內接四邊形,其中
BD是圓的直徑,
。
(1)求線段
PD的長;
(2)若
,求三棱錐
P-ABC的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在直三棱柱ABC-A
1B
1C
1中,
E是BC的中點。
(1)求異面直線AE與A
1C所成的角;
(2)若G為C
1C上一點,且EG⊥A
1C,試確定點G的位置;
(3)在(2)的條件下,求二面角A
1-AG-E的大小(文科求其正切值)。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
半徑為2cm的半圓紙片卷成圓錐放在桌面上,一陣風吹倒它,它的最高處距桌面( )
A. | B. | C.2cm | D.4cm |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
對于平面
,下列命題中真命題是 ( )
查看答案和解析>>