在數(shù)列{an}中,a1=3,且對(duì)任意大于1的正整數(shù)n,點(diǎn)(
an
an-1
)
在直線(xiàn)x-y-
3
=0
上,則an=
 
分析:根據(jù)一個(gè)點(diǎn)在一條直線(xiàn)上,點(diǎn)的坐標(biāo)滿(mǎn)足直線(xiàn)的方程,代入整理成一個(gè)等差數(shù)列,看出首項(xiàng)和公差,寫(xiě)出數(shù)列的通項(xiàng)公式,兩邊開(kāi)方,點(diǎn)的要求的結(jié)果.
解答:解:∵點(diǎn)(
an
,
an-1
)
在直線(xiàn)x-y-
3
=0

an
-
an-1
=
3
,
a1
=
3
,
{
an
}
是以
3
為首項(xiàng),
3
為公差的等差數(shù)列,
an
=
3
+(n-1)×
3
,
即an=3n2
故答案為:3n2
點(diǎn)評(píng):本題考查等差數(shù)列,考查等差數(shù)列的性質(zhì),考查等差數(shù)列的通項(xiàng),是一個(gè)簡(jiǎn)單的綜合題目,可以單獨(dú)作為選擇或填空出現(xiàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為T(mén)n,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線(xiàn)上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為T(mén)n,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案