【題目】已知直線l過(guò)點(diǎn)P(﹣1,3). (Ⅰ)若直線l與直線m:3x+y﹣1=0垂直,求直線l的一般式方程;
(Ⅱ)寫(xiě)出(Ⅰ)中直線l的截距式方程,并求直線l與坐標(biāo)軸圍成的三角形的面積.

【答案】解:(Ⅰ)∵直線m:3x+y﹣1=0的斜率為﹣3, 由題意:直線l的斜率為 ,又直線l過(guò)點(diǎn)P(﹣1,3),
根據(jù)直線方程的點(diǎn)斜式,得直線l的方程為:y﹣3= (x+1),
化簡(jiǎn)得:x﹣3y+10=0;
(Ⅱ)由(Ⅰ),x﹣3y+10=0,
化為截距式方程得: ,
∴直線l與坐標(biāo)軸圍成的三角形的面積S=
【解析】(Ⅰ)由直線m的方程求得斜率,則可得到直線l的斜率,又直線l過(guò)點(diǎn)P(﹣1,3),根據(jù)直線方程的點(diǎn)斜式求得直線l的方程;(Ⅱ)由(Ⅰ)中求出的直線方程化為截距式得到直線l在兩坐標(biāo)軸上的截距,代入面積公式得l與坐標(biāo)軸圍成的三角形的面積.
【考點(diǎn)精析】關(guān)于本題考查的一般式方程,需要了解直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x﹣1上,過(guò)點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門(mén)對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門(mén)的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]
(1)求頻率分布圖中a的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門(mén)評(píng)分不低于80的概率;
(3)從評(píng)分在[40,60]的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在[40,50]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2 )﹣x(m為常數(shù))是奇函數(shù).
(1)判斷函數(shù)f(x)在x∈( ,+∞)上的單調(diào)性,并用定義法證明你的結(jié)論;
(2)若對(duì)于區(qū)間[2,5]上的任意x值,使得不等式f(x)≤2x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1、F2 , 離心率e= ,與雙曲線 有相同的焦點(diǎn). (I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)F1的直線l與該橢圓C交于M、N兩點(diǎn),且| + N|= ,求直線l的方程.
(Ⅲ)是否存在圓心在原點(diǎn)的圓,使得該圓的任一條切線與橢圓C有兩個(gè)交點(diǎn)A、B,且OA⊥OB?若存在,寫(xiě)出該圓的方程,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (a∈R). (Ⅰ)當(dāng) 時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若 對(duì)任意的x>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,E,F(xiàn)分別是CD和BC的中點(diǎn),若 =x +y (x,y∈R),則2x+y=;若 (λ,μ∈R),則3λ+3μ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)|x+a|(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[﹣2,2]時(shí),函數(shù)f(x)的最大值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】霧霾是人體健康的隱形殺手,愛(ài)護(hù)環(huán)境,人人有責(zé).某環(huán)保實(shí)驗(yàn)室在霧霾天采用清潔劑處理教室空氣質(zhì)量.實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)在教室釋放清潔劑的過(guò)程中,空氣中清潔劑的含劑濃度y(mg/m3)與時(shí)間t(h)成正比;釋放完畢后,y與t的函數(shù)關(guān)系為y=( ta(a為常數(shù)),如圖,已知當(dāng)教室的空氣中含劑濃度在0.25mg/m3以上時(shí),教室最適合人體活動(dòng).根據(jù)圖中信息,從一次釋放清潔劑開(kāi)始,這間教室有h最適合人體活動(dòng).

查看答案和解析>>

同步練習(xí)冊(cè)答案