一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:為數(shù)表中第行的第個(gè)數(shù).
(1)求第2行和第3行的通項(xiàng)公式;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列;
(3)求關(guān)于)的表達(dá)式.

(1),;(2)證明見(jiàn)解析,;(3)

解析試題分析:(1)根據(jù)定義,,因此
,;(2)由于第行的數(shù)依賴于第的數(shù),因此我們可用數(shù)學(xué)歸納法證明;(3)設(shè)第行的公差為,
,而
,從而,即,于是有,由此可求得數(shù)列是公差為1的等差數(shù)列,而,由等差數(shù)列通項(xiàng)公式得,從而有
試題解析:(1)
. (4分)
(2)由已知,第一行是等差數(shù)列,
假設(shè)第行是以為公差的等差數(shù)列,則由

(常數(shù))
知第行的數(shù)也依次成等差數(shù)列,且其公差為.
綜上可得,數(shù)表中除最后2行以外每一行都成等差數(shù)列.        (9分)
(3)由于,所以,      (11分)
所以,
,               (13分)
于是,即,         (15分)
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/9/ryzij2.png" style="vertical-align:middle;" />,所以,數(shù)列是以2為首項(xiàng),1為公差的等差數(shù)列, 所以,,所以).   (18分)
考點(diǎn):(1)等差數(shù)列的通項(xiàng)公式;(2)等差數(shù)列的判定;(3)由遞推公式求通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和記為,已知
(Ⅰ)求,的值,猜想的表達(dá)式;
(Ⅱ)請(qǐng)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)不等式組所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/5/i3gfi.png" style="vertical-align:middle;" />,記內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為
(1)求的值及的表達(dá)式;
(2)設(shè)為數(shù)列的前項(xiàng)的和,其中,問(wèn)是否存在正整數(shù),使成立?若存在,求出正整數(shù);若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a,b是不相等的正數(shù),在a,b之間分別插入m個(gè)正數(shù)a1,a2, ,am和正數(shù)b1,b2, ,
bm,使a,a1,a2, ,am,b是等差數(shù)列,a,b1,b2, ,bm,b是等比數(shù)列.
(1)若m=5,,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此時(shí)m的值;
(3)求證:an>bn(n∈N*,n≤m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}共有n)項(xiàng),且,對(duì)每個(gè)i (1≤i,iN),均有
(1)當(dāng)時(shí),寫(xiě)出滿足條件的所有數(shù)列{an}(不必寫(xiě)出過(guò)程);
(2)當(dāng)時(shí),求滿足條件的數(shù)列{an}的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知an=n×0.8n(n∈N*).
(1)判斷數(shù)列{an}的單調(diào)性;
(2)是否存在最小正整數(shù)k,使得數(shù)列{an}中的任意一項(xiàng)均小于k?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列中,,為數(shù)列的前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)的和;
(3)證明對(duì)一切,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}(n∈N)中,a1=0,當(dāng)3an<n2時(shí),an+1=n2,當(dāng)3an>n2時(shí),an+1=3an.求a2,a3,a4,a5,猜測(cè)數(shù)列的通項(xiàng)an并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,,,
(1)求證:為等比數(shù)列,并求出通項(xiàng)公式;
(2)記數(shù)列 的前項(xiàng)和為,求

查看答案和解析>>

同步練習(xí)冊(cè)答案