(滿(mǎn)分14分) 定義在
上的函數(shù)
同時(shí)滿(mǎn)足以下條件:
①
在
上是減函數(shù),在
上是增函數(shù);②
是偶函數(shù);
③
在
處的切線(xiàn)與直線(xiàn)
垂直.
(1)求函數(shù)
的解析式;
(2)設(shè)
,求函數(shù)
在
上的最小值.
(1)
(2)
試題分析:(1)
.
由題意知
即
解得
所以函數(shù)
的解析式為
.
(2)
,
.
令
得
,所以函數(shù)
在
遞減,在
遞增.
當(dāng)
時(shí),
在
單調(diào)遞增,
.
當(dāng)
時(shí),即
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增,
.
當(dāng)
時(shí),即
時(shí),
在
單調(diào)遞減,
綜上,
在
上的最小值
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查分類(lèi)討論的數(shù)學(xué)思想,解題的關(guān)鍵是確定函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知函數(shù)
,則
=________________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
函數(shù)
的反函數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
若
,則
=_______________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知
是定義在
上的偶函數(shù),
在
上為增函數(shù),且
,則不等式
的解集為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù)
,
,其中
.
(1)若函數(shù)
是偶函數(shù),求函數(shù)
在區(qū)間
上的最小值;
(2)用函數(shù)的單調(diào)性的定義證明:當(dāng)
時(shí),
在區(qū)間
上為減函數(shù);
(3)當(dāng)
,函數(shù)
的圖象恒在函數(shù)
圖象上方,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù)
為常數(shù))是實(shí)數(shù)集
上的奇函數(shù),函數(shù)
在區(qū)間
上是減函數(shù).
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)若
在
上恒成立,求實(shí)數(shù)
的最大值;
(Ⅲ)若關(guān)于
的方程
有且只有一個(gè)實(shí)數(shù)根,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
函數(shù)
的定義域?yàn)镽,且定義如下:
(其中
M是實(shí)數(shù)集R的非空真子集),在實(shí)數(shù)集R上有兩個(gè)非空真子集
A、
B滿(mǎn)足
,則函數(shù)
的值域?yàn)?nbsp; ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(12分)已知函數(shù)
是定義在R上的奇函數(shù),當(dāng)
時(shí),
(1)求
的解析式
(2)解關(guān)于
的不等式
查看答案和解析>>