(1)對(duì)于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);

(2)請(qǐng)你認(rèn)真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導(dǎo)函數(shù),滿足,則上的減函數(shù)。然后填空建立一個(gè)普遍化的命題:

設(shè)是定義在上的可導(dǎo)函數(shù),,若  +,

     上的減函數(shù)。

注:命題的普遍化就是從考慮一個(gè)對(duì)象過(guò)渡到考慮包含該對(duì)象的一個(gè)集合;或者從考慮一個(gè)較小的集合過(guò)渡到考慮包含該較小集合的更大集合。

(3)證明(2)中建立的普遍化命題。

(1)證明:當(dāng)時(shí),用乘以,得所以,函數(shù)上是減函數(shù);………4分

(2)設(shè)是定義在上的可導(dǎo)函數(shù),,若+ ,則  上的減函數(shù)!.4分

(3)證明略!4分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省高二下學(xué)期期末考試數(shù)學(xué)理科 題型:解答題

(本小題滿分12分)(1)對(duì)于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);
(2)請(qǐng)你認(rèn)真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導(dǎo)函數(shù),滿足,則上的減函數(shù)。然后填空建立一個(gè)普遍化的命題
設(shè)是定義在上的可導(dǎo)函數(shù),,若   +,
        上的減函數(shù)。
注:命題的普遍化就是從考慮一個(gè)對(duì)象過(guò)渡到考慮包含該對(duì)象的一個(gè)集合;或者從考慮一個(gè)較小的集合過(guò)渡到考慮包含該較小集合的更大集合。
(3)證明(2)中建立的普遍化命題。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:遼寧省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(本小題滿分12分)(1)對(duì)于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);

(2)請(qǐng)你認(rèn)真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導(dǎo)函數(shù),滿足,則上的減函數(shù)。然后填空建立一個(gè)普遍化的命題:

設(shè)是定義在上的可導(dǎo)函數(shù),,若    +,

         上的減函數(shù)。

注:命題的普遍化就是從考慮一個(gè)對(duì)象過(guò)渡到考慮包含該對(duì)象的一個(gè)集合;或者從考慮一個(gè)較小的集合過(guò)渡到考慮包含該較小集合的更大集合。

(3)證明(2)中建立的普遍化命題。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省高二下學(xué)期期末考試數(shù)學(xué)理科 題型:解答題

(本小題滿分12分)(1)對(duì)于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);

(2)請(qǐng)你認(rèn)真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導(dǎo)函數(shù),滿足,則上的減函數(shù)。然后填空建立一個(gè)普遍化的命題:

設(shè)是定義在上的可導(dǎo)函數(shù),,若    +,

         上的減函數(shù)。

注:命題的普遍化就是從考慮一個(gè)對(duì)象過(guò)渡到考慮包含該對(duì)象的一個(gè)集合;或者從考慮一個(gè)較小的集合過(guò)渡到考慮包含該較小集合的更大集合。

(3)證明(2)中建立的普遍化命題。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

(1)對(duì)于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);

(2)請(qǐng)你認(rèn)真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導(dǎo)函數(shù),滿足,則上的減函數(shù)。然后填空建立一個(gè)普遍化的命題:

設(shè)是定義在上的可導(dǎo)函數(shù),,若    +

         上的減函數(shù)。

注:命題的普遍化就是從考慮一個(gè)對(duì)象過(guò)渡到考慮包含該對(duì)象的一個(gè)集合;或者從考慮一個(gè)較小的集合過(guò)渡到考慮包含該較小集合的更大集合。

(3)證明(2)中建立的普遍化命題。

查看答案和解析>>

同步練習(xí)冊(cè)答案