在四邊形ABCD中,
AB
=
DC
=(-1,1),
1
|
BA
|
BA
-
1
|
BC
|
BC
=
3
|
CA
|
CA
,則
AB
CB
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由向量式可判四邊形ABCD是菱形,其邊長(zhǎng)為
2
,且對(duì)角線AC等于邊長(zhǎng)的
3
倍,進(jìn)而由余弦定理可得cos∠ABC,可得數(shù)量積.
解答: 解:由
1
|
BA
|
BA
-
1
|
BC
|
BC
=
3
|
CA
|
CA
可知平行四邊形ABCD的角平分線AC平分∠BAC,
∴四邊形ABCD是菱形,其邊長(zhǎng)為|
AB
|=
2
,且對(duì)角線AC等于邊長(zhǎng)的
3
倍,
∴cos∠ABC=
2+2-6
2
×
2
=-
1
2
,
AB
CB
=
2
×
2
×(-
1
2
)=-1
故答案為:-1
點(diǎn)評(píng):本題考查平面向量的應(yīng)用,涉及余弦定理,判斷出四邊形的具體特征是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=2
3
,CC1=
2

(1)求BC1與面ACC1A1所成角的大;
(2)求二面角C1-BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長(zhǎng)方體AC1中,棱AB=BC=1,棱BB1=2,連結(jié)B1C,過B點(diǎn)作B1C的垂線交CC1于E,交B1C于F.
(1)求證:A1C⊥平面EBD;
(2)求三棱錐A-A1B1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0).四點(diǎn)(-
3
3
2
)、(1,
3
2
)、(
2
,0)、(
3
,-
3
2
)中有三點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)動(dòng)直線l過點(diǎn)A(2,0),與y軸交于點(diǎn)R,與橢圓C交于點(diǎn)Q(Q不與A重合).過原點(diǎn)O作直線l的平行線m,直線m與橢圓C的一個(gè)交點(diǎn)記為P.問:是否存在常數(shù)λ使得|AQ|、λ|OP|、|AR|成等比數(shù)列?若存在,請(qǐng)你求出實(shí)數(shù)λ的值;若不存在,請(qǐng)說明緣由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式ax2-(a+2)x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1中,AA1=AB,E是側(cè)棱AA1的中點(diǎn).
(Ⅰ)證明:BC1⊥EC;
(Ⅱ)求二面角A-EC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-|x|+2a-1,(a≤
1
2
). 
(1)若a=0,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是菱形,四邊形MADN是矩形,平面MADN⊥平面ABCD,E,F(xiàn)分別為MA,DC的中點(diǎn),求證:
(Ⅰ)EF∥平面MNCB;
(Ⅱ)平面MAC⊥平面BND.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,正△PF1F2的中心恰為橢圓的上頂點(diǎn)A,且
AF1
AF2
=-2.
(1)求橢圓E的方程;
(2)過點(diǎn)P的直線l與橢圓E交于M,N兩點(diǎn),點(diǎn)B在x軸上,△BMN是以角B為頂角的等腰直角三角形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案