如圖,在四棱錐P-ABCD中,PA丄平面ABCD, ,,AD=AB=1,AC 和 BD 交于O點(diǎn).
(I)求證:平面PBD丄平面PAC.
(II)當(dāng)點(diǎn)A在平面PBD內(nèi)的射影G恰好是ΔPBD的重心時(shí),求二面角B-PD-A的余弦值.
(Ⅰ)見解析;(II) .
【解析】
試題分析:(Ⅰ)利用條件證明,,即可證平面平面;(II) 過作的垂線為軸,為軸,為軸,建立空間坐標(biāo)系,得各點(diǎn)坐標(biāo),設(shè),利用,先求出的值,再分別求面和面的法向量,從而可得結(jié)論.
試題解析:(Ⅰ)依題意,,,所以, 2分
而面,,又,∴面,又面,
∴平面平面. 4分
(Ⅱ)
過作的垂線為軸,為軸,為軸,建立如圖所示坐標(biāo)系,則 ,,,設(shè),所以, ,
由,得
解得,. 6分
∴P點(diǎn)的坐標(biāo)為;
面的一個(gè)法向量為, 8分
設(shè)面的一個(gè)法向量為,,
即,∴ , 10分
,
所以二面角的余弦值為. 12分
考點(diǎn):1、面面垂直的判定定理;2、利用空間向量求二面角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com