已知點(diǎn)F為拋物線y2=-8x的焦點(diǎn),O為原點(diǎn),點(diǎn)P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),點(diǎn)A在拋物線上,且|AF|=4,則|PA|+|PO|的最小值為
2
13
2
13
分析:利用拋物線的定義由|AF|=4得到A到準(zhǔn)線的距離為4,即可求出點(diǎn)A的坐標(biāo),根據(jù):“|PA|+|PO|”相當(dāng)于在準(zhǔn)線上找一點(diǎn),使得它到兩個(gè)定點(diǎn)的距離之和最小,最后利用平面幾何的方法即可求出距離之和的最小值.
解答:解:∵|AF|=4,由拋物線的定義得,
∴A到準(zhǔn)線的距離為4,即A點(diǎn)的橫坐標(biāo)為-2,
又點(diǎn)A在拋物線上,∴從而點(diǎn)A的坐標(biāo)A(-2,4);
坐標(biāo)原點(diǎn)關(guān)于準(zhǔn)線的對稱點(diǎn)的坐標(biāo)為B(4,0)
則|PA|+|PO|的最小值為:
|AB|=
(4+2)2+(0-4)2
=2
13

故答案為:2
3
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用拋物線的簡單性質(zhì)解決最小值問題,靈活運(yùn)用點(diǎn)到點(diǎn)的距離、對稱性化簡求值,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F為拋物線y2=4x的焦點(diǎn),過拋物線上的點(diǎn)M作其準(zhǔn)線的垂線,垂足為N,若以線段NF為直徑的圓C恰好過點(diǎn)M,則圓C的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省紅色六校高三第二次聯(lián)考文科數(shù)學(xué)試卷 題型:填空題

已知點(diǎn)F為拋物線y2=4x的焦點(diǎn),過此拋物線上的點(diǎn)M作其準(zhǔn)線的垂線,垂足為N,若以線段NF為直徑的圓C恰好過點(diǎn)M,則圓C的標(biāo)準(zhǔn)方程是_____

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省實(shí)驗(yàn)中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知點(diǎn)F為拋物線y2=4x的焦點(diǎn),過拋物線上的點(diǎn)M作其準(zhǔn)線的垂線,垂足為N,若以線段NF為直徑的圓C恰好過點(diǎn)M,則圓C的標(biāo)準(zhǔn)方程是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知點(diǎn)F為拋物線y2=-8x的焦點(diǎn),O為原點(diǎn),點(diǎn)P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),點(diǎn)A在拋物線上,且|AF|=4,則|PA|+|PO|的最小值為   

查看答案和解析>>

同步練習(xí)冊答案