分析 根據(jù)函數(shù)y的解析式,列出使解析式有意義的不等式組,求出解集即可.
解答 解:函數(shù)$y=ln(2sinx-\sqrt{2})+\sqrt{1-2cosx}$,
∴$\left\{\begin{array}{l}{2sinx-\sqrt{2}>0}\\{1-2cosx≥0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{sinx>\frac{\sqrt{2}}{2}}\\{cosx≤\frac{1}{2}}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{π}{4}+2kπ<x<\frac{3π}{4}+2kπ,k∈Z}\\{\frac{π}{3}+2kπ≤x≤\frac{5π}{3}+2kπ,k∈Z}\end{array}\right.$,
即$\frac{π}{3}$+2kπ≤x<$\frac{3π}{4}$+2kπ,k∈Z;
∴y的定義域是$\{x|\frac{π}{3}+2kπ≤x<\frac{3π}{4}+2kπ,k∈Z\}$.
故答案為:{x|$\frac{π}{3}$+2kπ≤x<$\frac{3π}{4}$+2kπ,k∈Z}.
點評 本題考查了根據(jù)函數(shù)的解析式求定義域的應用問題,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com