【題目】某居民區(qū)有一個(gè)銀行網(wǎng)點(diǎn)(以下簡(jiǎn)稱“網(wǎng)點(diǎn)”),網(wǎng)點(diǎn)開設(shè)了若干個(gè)服務(wù)窗口,每個(gè)窗口可以辦理的業(yè)務(wù)都相同,每工作日開始辦理業(yè)務(wù)的時(shí)間是8點(diǎn)30分,8點(diǎn)30分之前為等待時(shí)段.假設(shè)每位儲(chǔ)戶在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率都相等,且每位儲(chǔ)戶是否在該時(shí)段到網(wǎng)點(diǎn)相互獨(dú)立.根據(jù)歷史數(shù)據(jù),統(tǒng)計(jì)了各工作日在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù),得到如圖所示的頻率分布直方圖:
(1)估計(jì)每工作日等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù)的平均值;
(2)假設(shè)網(wǎng)點(diǎn)共有1000名儲(chǔ)戶,將頻率視作概率,若不考慮新增儲(chǔ)戶的情況,解決以下問題:
①試求每位儲(chǔ)戶在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率;
②儲(chǔ)戶都是按照進(jìn)入網(wǎng)點(diǎn)的先后順序,在等候人數(shù)最少的服務(wù)窗口排隊(duì)辦理業(yè)務(wù).記“每工作日上午8點(diǎn)30分時(shí)網(wǎng)點(diǎn)每個(gè)服務(wù)窗口的排隊(duì)人數(shù)(包括正在辦理業(yè)務(wù)的儲(chǔ)戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點(diǎn)至少需開設(shè)多少個(gè)服務(wù)窗口?
參考數(shù)據(jù):;;
;.
【答案】(1)10(2)①0.01②4
【解析】
(1)先求出各組的頻率,根據(jù)均值公式得出平均值;
(2)①在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù)服從,根據(jù)期望得出概率;
②先求出,然后與參考數(shù)據(jù)進(jìn)行對(duì)比,得出整數(shù)的最值.
(1)根據(jù)頻率分布直方圖,各組的頻率依次為:0.04,0.24,0.48,0.16,0.08,
故所求的平均值為: .
即每工作日等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù)的平均值為10.
(2)①設(shè)在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù)為,
每位儲(chǔ)戶到網(wǎng)點(diǎn)辦理業(yè)務(wù)的概率為,則,
所以的數(shù)學(xué)期望,
將頻率視作概率,根據(jù)(1)的結(jié)論,所以,解得.
即每位儲(chǔ)戶在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率為0.01.
②由①知,,則.
設(shè)網(wǎng)點(diǎn)共開設(shè)了個(gè)服務(wù)窗口,
則事件即“每工作日等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù)不超過”,
其概率為,
所以滿足的最小正整數(shù),即為所求.
因?yàn)?/span> ,
,
所以,即為的最小值.
所以根據(jù)要求,網(wǎng)點(diǎn)至少需開設(shè)4個(gè)服務(wù)窗口.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,現(xiàn)用一種新配方做試驗(yàn),生產(chǎn)了100件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:
質(zhì)量指標(biāo)值 | |||||
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)將答題卡上列出的這些數(shù)據(jù)的頻率分布表填寫完整,并補(bǔ)齊頻率分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)與中位數(shù)(結(jié)果精確到0.1).
質(zhì)量指標(biāo)值分組 | 頻數(shù) | 頻率 |
6 | 0.06 | |
合計(jì) | 100 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記表示,中的最大值,如.已知函數(shù),.
(1)設(shè),求函數(shù)在上零點(diǎn)的個(gè)數(shù);
(2)試探討是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面為直角梯形,,為等邊三角形,平面平面,是的中點(diǎn).
(1)證明:;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,且下列三個(gè)關(guān)系:,,中有且只有一個(gè)正確,則函數(shù)的值域是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),點(diǎn),,,動(dòng)點(diǎn)滿足,點(diǎn)為線段的中點(diǎn),拋物線:上點(diǎn)的縱坐標(biāo)為,.
(1)求動(dòng)點(diǎn)的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線的準(zhǔn)線上一點(diǎn)滿足,試判斷是否為定值,若是,求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com