18.如圖,直線y=ax+2與曲線y=f(x)交于A、B兩點(diǎn),其中A是切點(diǎn),記h(x)=$\frac{f(x)}{x}$,g(x)=ax-f(x),則( 。
A.g(x)的極小值點(diǎn)小于極大值點(diǎn),且極小值為-2
B.g(x)的極小值點(diǎn)大于極大值點(diǎn),且極大值為2
C.h(x)只有一個(gè)極值點(diǎn)
D.h(x)有兩個(gè)極值點(diǎn),且極小值點(diǎn)小于極大值點(diǎn)

分析 設(shè)f(x)的極大值點(diǎn)為m,f′(m)=a,x<m,f′(x)>a,x>m,f′(x)<a,判斷g′(m)=0,x<m,g′(x)<0,x>m,g′(x)>0,即可得出結(jié)論.

解答 解:∵直線y=ax+2與曲線y=f(x)交于A、B兩點(diǎn),
∴ax+2=f(x)有兩個(gè)解,
設(shè)f(x)的極大值點(diǎn)為m,∴f′(m)=a,x<m,f′(x)>a,x>m,f′(x)<a.
g(x)=ax-f(x),g′(x)=a-f′(x),∴g′(m)=a-f′(m),
∴g′(m)=0,x<m,g′(x)<0,x>m,g′(x)>0,
∴x=m是函數(shù)的極小值點(diǎn),且g(m)=am-f(m)=-2,
同理g(x)有極大值,
故選:A

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的判斷以及極值的判斷,利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某種波的傳播是由曲線f(x)=Asin(ωx+φ)(A>0)來(lái)實(shí)現(xiàn)的,我們把函數(shù)解析式f(x)=Asin(ωx+φ)稱為“波”,把振幅都是A 的波稱為“A 類波”,把兩個(gè)解析式相加稱為波的疊加.已知“1 類波”中的兩個(gè)波f1(x)=sin(x+φ1)與f2(x)=sin(x+φ2)疊加后仍是“1類波”,則φ21的值可能為( 。
A.$\frac{π}{8}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知拋物線x2=4y,斜率為k的直線l過(guò)其焦點(diǎn)F且與拋物線相交于點(diǎn)A(x1,y1),B(x2,y2
(1)求直線L的一般式方程;
(2)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知三棱錐P-ABC中,PA=4,AB=AC=2$\sqrt{3}$,BC=6,PA⊥面ABC,則此三棱錐的外接球的表面積為( 。
A.16πB.32πC.64πD.128π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為1的正四棱錐的側(cè)面積為(  )
A.$\sqrt{3}$B.2C.3D.$\frac{3\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.正四棱錐S-ABCD的高和底面邊長(zhǎng)都是4,則它的側(cè)面積為$4\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=mlnx+$\frac{m^2}{x}$(其中m為常數(shù)),且x=1是f(x)的極值點(diǎn).
(Ⅰ)設(shè)曲線y=f(x)在($\frac{1}{e}$,f($\frac{1}{e}$))處的切線為l,求l與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)求證:f(x)>4f′(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.黃岡中學(xué)邀請(qǐng)一批專家來(lái)為理科實(shí)驗(yàn)班的學(xué)生舉辦5期知識(shí)講座,其中Q大學(xué)教授3人,不參加最后一期講座,B大學(xué)教授2人,不參加相鄰兩期講座,則共有36種安排方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若對(duì)x>0,y>0,有$\frac{2}{x}$+$\frac{1}{y}$≥$\frac{m}{x+2y}$恒成立,則實(shí)數(shù)m的取值范圍是m≤8.

查看答案和解析>>

同步練習(xí)冊(cè)答案